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REVIEW Okanagan Campus

Throughout the course we have used allometric relationships to
help understand evolutionary patterns in ecological systems.
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REVIEW Okanagan Campus

These relationships are only meaningful if there are underlying
mechanisms (otherwise it's just correlation without causation).
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Metabolism Okanagan Campus

Metabolism is the biological

processing of energy and
materials and involves a complex
network of biochemical reactions.

Organisms have different rates of
uptake, transformation, and
allocation, but the same basic
machinery (i.e., TCA cycle and
Ox. Phosph.) is conserved.

Source: Wikipedia
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MetabOHC I"ate Okanagan Campus

Brown et al. (2004) argue that
because the metabolic rate

underpins the uptake,
transformation, and allocation of
energy it is the fundamental rate

. and that metabolic rates will,
therefore, underpins every aspect
of a species’ ecology.

Source: Wikipedia
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MetabOHC I"ate Okanagan Campus

Individuals have some plasticity

in the expression of metabolism
(e.g., dormancy)

... but the conserved machinery
means trends should emerge

across taxa.

Source: Wikipedia
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Metabolic allometry —

Many traits change with body size according to power functions of

the form:

Y = aMb

Most biological scaling exponents (b) are multiples of 7

Metabolic rate scales with body size as:

| = aMsi.

log10(Metabolic Rate)

o will have different values for basal,

field, and maximal rates, but the

Tog10(Mass)

exponent is conserved.
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Temperature dependent reactions Okanagan Campus

Essentially all biological processes are temperature dependent (e.g.,
individual /population growth rates, life spans, development).

Biochemical reaction rates increase exponentially with temperature
according to the Boltzmann factor:

where E is the activation energy, k is Boltzmann's constant, and
T is absolute temperature in K (Boltzmann, 1872).

This exponential form governs the temperature dependence of
whole-organism metabolism.
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Temperature and allometry

Okanagan Campus

The combined effects of body size and temperature on metabolic
rates can be expressed via:

3 _E
| = aMze &1

Taking natural logarithms and rearranging we can obtain
mass-corrected metabolic rates:

In(/ M~%) = =& + Inge)

. and temperature-corrected metabolic rates:

In(/ e%) = 2 In(M) + Infa)
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Temperature and allometry A

These relations can accurately predict metabolic rates over 20
orders of magnitude in body size from single-celled microbes to
large vertebrates and trees.
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Temp. and Metabolism Take Homes Okanagan Campus

The vast majority of organisms share the same metabolic pathways,
which are a series of temperature dependent biochemical reactions.

The combined effects of body size and temperature on
whole-organism metabolic rates can be expressed as:

3 _E
| = aMze &1

This equation accurately predicts metabolic rates across the
kingdom of life (!).

... but what does this imply for other ecological processes?
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Mass-specific metabolism e

The combined effects of body size and temperature on
whole-organism metabolic rates can be expressed as:

3 _E
| = aMze &1

Mass-specific metabolic rate, B, can be obtained by dividing both
sides by M.

E
| _ aMie kT _1 _E
=" — BoMiiew

Blw

. which implies that mass-specific biological rates that are

underpinned by metabolism should scale according to a power of
1

i
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Individual biomass production S —

Organisms devote some prop. of their metabolism to catabolism,
and the remainder to anabolism, growth, and reproduction.

Whole-organism P and mass-specific % rates of biomass
production should be tightly linked to metabolism and scale as:
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Brown et al. (2004), data from Ernest et al. (2003)
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ntogenetic grow

Okanagan Campus

Metabolism thus sets the pace of life and life-history schedules.

Source: Biology Dictionary Source: Nat Geo
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Birth and mortality rates S —

At carrying capacity most populations have stable size, which
implies that births oc deaths.
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Copynght & Pearson Education, Inc., publishing as Benjamin Cummings.

Because metabolic rates underpin biomass production, metabolism
should also underpin birth, and therefore, mortality rates.
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Birth and mortality rates cont.
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Okanagan Campus
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Marba et al. (2007) showed that plant birth and mortality rates

scale with slopes of —}1.
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Birth and mortality rates cont. R —

The —1 slope also holds for fish mortality rates Z (ind. year~1).
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Brown et al. (2004), data from Pauly & Pullin (1988)
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Population growth rates

Okanagan Campus

A metabolic basis for biomass production, development, and birth

and mortality rates implies a metabolic basis for population growth
rates fmax.
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Population densities e

Solving the logistic growth equation, % = rN(%), for the

steady state when ‘2—’2’ = 0 yields a prediction for metabolically

driven carrying capacities, K:

E

_3
K ox M~ 2exT

for derivations see Brown et al. (2004)
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Population densities cont.

Okanagan Campus

3] . 0 5
The M™% scaling holds in carnivores and plants.
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Biomass turnover S eEE e

Because production and consumption should, theoretically, be ~
equal for systems in steady states, turnover should be :
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Take homes

Okanagan Campus

Legend The vast majority of organisms
share the same metabolic

pathways.

Because metabolic rate underpins

the uptake, transformation, and
allocation of energy, it also
underpins many (most?)

Source: Wikipedia eCO|Oglca| rates.
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Take homes COI’It. Okanagan Campus

Metabolism predictably links individual-level processes with
whole-ecosystem processes and acts as a unifying theory (like
genetic inheritance for evolution).

Most of an individual's ecology is constrained by metabolism,

making it a potent target for selection.

Metabolic theory can help us understand how to manage species,
populations, and whole ecosystems.
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