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Simple Linear Regression



Simple Linear Regression

When observing biological systems, one of the first questions we often

ask ourselves is: “Is there a relationship between X and Y?”.

Chmura et al. 2013
Bowling et al. 2020 Johnson et al. 2017

Our verbal hypothesis in this case is ‘X is proportional to Y’. But looking

at the data isn’t enough. So how do we approach the problem

statistically?
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Simple Linear Regression Cont.

Fitting a straight line to data is the root of all modern modelling.

The ‘simple’ in simple linear regression refers to the fact that there is

only one parameter affecting the relationship between x and y .

The method itself isn’t simple and there’s a lot going on under the hood.
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Regression Data

Data is of the form:

d = {(x1, y1), (x2, y2), . . . , (xn, yn)}

X Y

x1 y1
x2 y2
. . . . . .

xn yn

Verbal description of the hypothesis:

y increases with x or... y is proportional to x
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Regression Model

More formally, a straight line is described by an intercept (β0) and a

slope (β1): yi = β0 + β1xi

With data d = {(x1, y1), (x2, y2), . . . , (xn, yn)}, the question is what

values of β0 and β1 best describe the relationship between x and y

(i.e., what line do you draw through the data?)
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Least Squares Fitting

The methods for fitting lines/shapes/curves date

back thousands of years and are rooted in

astronomy and geodesy. These original approaches

served humanity well for thousands of years, but

the challenges of navigating the Earth’s oceans

during the ‘Age of Exploration’ required more

precise methods and there were a flurry of activity

during the course of the eighteenth century.

Source: www.constellation-guide.com

In 1805, Legendre published an algebraic procedure

for fitting linear equations to data. His ‘least

squares’ approach assumed each observation yi is

accompanied by some amount of noise εi . If you

further constrain the problem such that the sum of

the squared errors needs to be minimized, only one

line fits the data.
Source: Wikipedia
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Least Squares Fitting Cont.

For a given observation, a line predicts yi to be β0 + xiβ1.

This implies that the error for yi is εi = yi − (β0 + xiβ1)

i.e., observed − expected

...and the sum of the squared errors is
∑n

i=1 ε
2
i or∑n

i=1(yi − (β0 + xiβ1))2.

We want to find the value for β0
and β1 that minimizes this quantity.

Biol 520C: Statistical modelling for biological data 10



Parameter estimation

So how we estimate the parameters β0 & β1?

One solution is to calculate
∑n

i=1(yi − (β0 + xiβ1))2 for all values of β0
and β1 between −∞ and ∞.

But who wants to do that?
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Matrices

Matrices are rectangular collections of numbers, generally denoted via

bold capital letters.

A =

 2 7 −3 4

−7 1 1 8

−9 4 5 −1


The dimension of a matrix is expressed as number of rows × number of

columns. So, A is a 3 × 4 matrix.

It is common to refer to elements in a matrix by subscripts, with the row

first and the column second:

A =

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4


So here, a3,2 = 4 , and a1,3 = −3.
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Vectors

Vectors are special matrices with only one row (called a row vector) or

only one column (called a column vector).

B =
(

2 7 −3 5
)

B is a 4 dimensional row vector (or a 1×4 matrix)

C =

 2

9

−3


C is a 3 dimensional column vector (or a 3×1 matrix)

‘Ordinary’ numbers can be thought of as a 1 × 1 matrices, or scalars

(e.g., D = 7).
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Matrix Addition/Subtraction

To perform matrix addition/subtraction, two matrices must have the

same number of rows and columns (i.e., dimensions). In that case simply

add/subtract each of the individual components:

A + B =

(
1 −5 4

2 5 3

)
+

(
8 −3 −4

4 −2 9

)
=

(
1 + 8 −5− 3 4− 4

2 + 4 5− 2 3 + 9

)
=

(
9 −8 0

6 3 12

)

Matrix addition has many of the same properties as normal addition.

A + B = B + A

A + (B + C ) = (A + B) + C
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Matrix Transposition

To take the transpose of a matrix, simply switch the rows and columns

around. The transpose of A can be denoted as A′ or AT .

A =

(
1 −5 4

2 5 3

)
A′ = AT =

 1 2

−5 5

4 3


If a matrix is its own transpose, then that matrix is said to be symmetric,

e.g.:

A =

 1 −5 4

−5 7 3

4 3 3

 = A′ = AT
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Matrix Multiplication

To multiply a matrix by a scalar, also known as scalar multiplication,

multiply every element in the matrix by the scalar.

6× A = 6×

(
1 −5 4

2 5 3

)
=

(
6× 1 6×−5 6× 4

6× 2 6× 5 6× 3

)
=(

6 −30 24

12 30 18

)

To multiply two vectors with the same length together, multiply every

entry in the two vectors together and then add all the products up (called

dot product).

x ·y =
(

1 −5 4
)
×
(

4 −2 5
)

= (1×4) + (−5×−2) + (4×5) = 34
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Matrix Multiplication Cont.

To perform matrix multiplication, the first matrix must have the same

number of columns as the second matrix has rows. The dimensions of

the resulting matrix equals the number of rows of the first matrix, and

the number of columns of the second matrix (e.g., a 3×5 matrix × a

5×7 matrix = a 3×7 matrix). To perform the multiplication, you take

the dot product of the corresponding row of the first matrix and the

corresponding column of the second matrix.

C × D =

(
3 −9 −8

2 4 3

)
×

 7 −3

−2 3

6 2

 =

(
(3× 7) + (−9×−2) + (−8× 6) (3×−3) + (−9× 3) + (−8× 2)

(2× 7) + (4×−2) + (3× 6) (2×−3) + (4× 3) + (3× 2)

)
=

(
21 + 18− 48 −9− 27− 16

14− 8 + 18 −6 + 12 + 6

)
=

(
−9 −52

24 12

)
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Matrix Properties

An identity matrix is a square matrix where every diagonal entry is 1 and

all the other entries are 0

I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


The trace of a n × n matrix is the sum of all the diagonal entries. In

other words, for n × n matrix trace(A) = tr(A) =
∑n

i=1 ai,i

tr(I ) = tr

1 0 0

0 1 0

0 0 1

 = 1 + 1 + 1 = 3
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Matrix Inversion

The inverse of a matrix is a special matrix that, when multiplied with its

inverse, turn any matrix into an Identify matrix.

e.g., the matrix B is the inverse of matrix A if AB = BA = I .

The inverse of matrix is denoted as B = A−1, so AA−1 = I

Inverting matrices requires a complicated algorithm, so we usually rely on

computers to perform the calculations (e.g. the solve() function in R).
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Linear regression and matrix notation

Given our dataset (x1, y1), (x2, y2), . . . , (xn, yn) we can re-write x, y, and

our regression parameters as matrices:

The observations of the

response variable y are

grouped into a single

column, n × 1, matrix

y =


y1
y2
...

yn



The regression

coefficients β0 and β1
are grouped into a 2× 1

matrix

β =

(
β0
β1

)

The observations of the

predictor are grouped

into a two column,

n × 2 matrix.

x =


1 x1
1 x2
...

...

1 xn
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Linear regression and matrix notation

Why the column of 1s in x? When we multiply x by β we get:

xβ =


1 x1
1 x2
...

...

1 xn

×
(
β0
β1

)
=


1× β0 + x1 × β1
1× β0 + x2 × β1

...

1× β0 + xn × β1

 =


β0 + β1x1
β0 + β1x2

...

β0 + β1xn
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Mean Squared Error

At each data point, our model results in some amount of error in the

prediction, so we have n errors. These form a vector:

ε = y − xβ =


y1
y2
...

yn

−

β0 + β1x1
β0 + β1x2

...

β0 + β1xn

 =


y1 − (β0 + β1x1)

y2 − (β0 + β1x2)
...

yn − (β0 + β1xn)


So our original regression problem in matrix notation is:


y1
y2
...

yn

 =


1 x1
1 x2
...

...

1 xn

 ·
(
β0
β1

)
+


ε1
ε2
...

εn
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Linear regression in matrix notation

So how does this help us estimate our regression parameters?

We can also rewrite our sum of squares equation in matrix form

∑n
i=1 ε

2
i →

∑n
i=1 ε

T ε

After some derivations we won’t go over, we obtain a formula for the

least squares estimates of the parameters:

β = (xTx)−1xTy

So instead of plugging in all of the possible values of β0 and β1 between

−∞ and ∞ to obtain our parameter estimates, all we have to do is a

matrix calculation.
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A note on assumptions

As we just saw, translating a conceptual, verbal hypothesis into

something that can actually be estimated with data requires the use of

mathematical formulae.

In order to work out these formulae, we often rely on making

assumptions/approximations to make the math more manageable.

Some assumptions don’t have large impacts on outcomes, while others

can be critically important.

Just because a specific estimator makes assumptions that aren’t met by

real data, this doesn’t mean that the relationship doesn’t exists or that

the estimator is useless, but it does tell you that your estimator can be

improved.
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Linear regression assumptions

Applying linear regression to a problem relies on satisfying 5 assumptions:

• Correct model specification

• Normality of the residuals

• Homogeneity

• Fixed x

• Independence
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i) Correct model specification

In model based inference we need to apply some sort of model to our

data.

One of the first things you need to ask yourself before fitting a simple

linear model to a dataset is: “Is this really a good model for my data?”

Biol 520C: Statistical modelling for biological data 29



ii) Normality of the residuals

The least squares derivations assume the errors, εi , are normally

distributed.

This doesn’t mean the data need to be normally distributed (why?). It

means that the residuals at each x value should be normally distributed.

Source: Zuur et al. (2009)

In practice, we usually don’t have many repeat measures of a specific x

value, so checking for this usually means pooling all of the residuals and

checking for normality. Normality of pooled residuals is reassuring, but

does not necessarily mean the population is normally distributed.
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iii) Heterogeneity

Heterogeneity is related to the assumption of normality. We just saw that

the residuals at each x value should be normally distributed, but they also

need to be drawn from the same distribution.

What will heterogeneity do to your estimates?
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iv) Fixed x

This assumption means you are assuming there is no stochasticity around

your x values (i.e., x is known exactly and entirely deterministic).

If you have defined the exact values at which x and y are measured, and

there is no measurement error, this assumption is perfectly fine.

Situations where x is accompanied by a meaningful amount measurement

error can break this assumption.
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v) Independence

The assumption of independence is perhaps the most important

assumption made by simple linear regression. Serial dependence can enter

into your data in a number of ways, but the impact is typically the same:

you over estimate the amount of information contained in a dataset.

For example if I’m sitting in my back yard counting the number of birds,

and I see a crow at 8:30:31, and then again at 8:30:32, and then again at

8:30:33, do I really have three unique pieces of information?

The standard deviation is given by: σ =
√∑

(xi−µ)2
n , what effect does

breaking the assumption of independence have?
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Example: Lion noses

The Problem: In lion populations,

the sustainable application of trophy

hunting is often used as a way of

maintaining stable populations while

generating valuable funds to support

conservation efforts. If you hunt

older lions that are past their

reproductive prime, the impact on

the population is negligible, but if

you hunt lions that are too young,

there is a risk of the population

destabilising. Whitman et al. (2004)

looked at whether there was a

relationship between how black a

male lion’s nose was and its age.

Biol 520C: Statistical modelling for biological data 35



Lion noses: the data

proportionBlack Age

0.21 1.1

0.14 1.5

0.11 1.9

0.13 2.2

0.12 2.6

0.13 3.2

0.12 3.2

0.18 2.9

0.23 2.4

0.22 2.1

0.2 1.9

0.17 1.9

0.15 1.9

0.27 1.9

0.26 2.8

0.21 3.6

0.3 4.3

0.42 3.8

0.43 4.2

0.59 5.4

0.6 5.8

0.72 6

0.29 3.4

0.1 4

0.48 7.3

0.44 7.3

0.34 7.8

0.37 7.1

0.34 7.1

0.74 13.1

0.79 8.8

0.51 5.4

The regression problem in matrix notation is:


0.21

0.14
...

0.51

 =


1 1.1

1 1.5
...

...

1 5.4

 ·
(
β0
β1

)
+


ε1
ε2
...

εn
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Lion noses: Estimating the parameters

Calculating our parameters using β = (xTx)−1xTy can easily done in R:

data <- read.csv("LionNoses.csv")

x <- matrix(c(rep(1, nrow(data)),data$ageInYears),
nrow = nrow(data), ncol = 2)

y <- matrix(data$proportionBlack ,
nrow = nrow(data), ncol = 1)

xtx <- t(x) %*% x

xtx.inv <- solve(xtx)

xty <- t(x) %*% y

beta <- xtx.inv %*% xty

which gives us β0 = 0.06969626 and β1 = 0.05859115
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Lion noses: Estimating the parameters

We can also do this the easy way by using the lm() function:

lm(proportionBlack ~ ageInYears , data = data)

Call:

lm(formula = proportionBlack ~ ageInYears , data = data)

Residuals:

Min 1Q Median 3Q Max

-0.20406 -0.07758 -0.01750 0.07913 0.29876

Coefficients:

Estimate Std. Error t value Pr(>t)

(Intercept) 0.069696 0.041956 1.661 0.107

ageInYears 0.058591 0.008307 7.053 7.68e-08 ***

---

Residual standard error: 0.1238 on 30 degrees of freedom

Multiple R-squared: 0.6238 , Adjusted R-squared: 0.6113

F-statistic: 49.75 on 1 and 30 DF , p-value: 7.677e-08
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Least Squares and Stochasticity

The least squares method provides a path for parametrising a model’s

deterministic component, but without any statement about the

stochasticity of the system.

To solve this issue, we need to approach the problem as probalists and

assume that each error term εi comes from some distribution φ.

We’ll continue along this train of thought next lecture.
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