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Review



Simple linear regression

Last lecture we covered how simple linear regression models fit by least

squares provides a formal description of the deterministic components of

a system where y is proportional to x :

yi = β0 + xiβ1

Minimising the sum of the squares provided a path forward for the

deterministic part, but provided no description of our model’s stochastic

component.

This led us to approaching the problem as probabilists.
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Distributional assumptions

How does that help?
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Probability Theory 101



Preamble

If you were to look around UBC’s libraries you’d probably find dozens if

not hundreds of books on probability theory. There’s no way I could

teach you all of this material in a single lecture.

I’m not trying to teach you ‘probability theory’, but I am trying to give

you those pieces you’ll need to understand the concepts relevant to this

course.

Hopefully this will also motivate you to take a deeper dive into

probability theory and probability distributions outside of this course.
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Why probability theory?

Biological data are very noisy, and full of ‘randomness’.

Being a good modeller means being able to understand not only the

deterministic part of a model, but also the stochastic part.

Most introductory statistics courses teach you methods that assume the

randomness of a process is normally distributed, in many cases this is

totally fine, in many others though this is not an appropriate assumption.

In order to make sense of a system’s stochasticity, we need to rely on

probability distributions. In order to work with probability distributions,

we need to understand some probability theory.
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History of probability theory

In probability theory we are concerned with the occurrence of random

events.

More specifically, we’re interested not in single outcomes, but average

outcomes over a large number of replicates (flipping coins, rolling die,

picking names from a hat, etc...)

What group of people have a lot of experience with the outcomes of

random chance events? Gamblers.
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History of probability theory

Pascal Source: Wikipedia de Fermat Source: Wikipedia

In the mid 1600s when a professional gambler asked French

mathematician Pierre de Fermat why if he bet on rolling at least one six

in four throws of a die he won in the long term, whereas betting on

throwing at least one double-six in 24 throws of two dice resulted in his

losing on average.

de Fermat worked with Blaise Pascal to show mathematically why this

was the case...
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History of probability theory cont.

de Fermat worked out that

Prob. of one 6 in 4 throws = 1- Prob. of no 6 in 4 throws

= 1 - (5/6)4

= 0.518 (i.e., winning on average)

Whereas

Prob. of 6-6 in 24 = 1- Prob. of no 6-6 in 24

= 1 - (35/36)24

= 0.491 (i.e., losing on average)

...and this work became the foundation of modern probability theory.
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Probability theory 101

In probability theory we are concerned with the occurrence of random

events.

(Think of an event as the outcome of an experiment)

We write this:

Pr{A} = Probability that event A occurs,

Pr{B} = Probability that event B occurs,

etc...
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Probability of an event

Let’s say S is the collection of all possible outcomes of our ‘experiment’

(sides on a coin, numbers on a die, possible ages, whatever)

This collection of outcomes is termed the ‘sample space’, the sum of all

the probabilities in the sample space is 1 (Pr{S} = 1)

For tossing a single six-sided die, the sample space is {1, 2, 3, 4, 5, 6}.
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Probability of an event, cont.

We carry out our experiment and we observe event ‘A’

Pr{A} = Probability of event A

= (area of A) / (area of S)
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Probability of an event, cont.

We carry out our experiment again and we observe event ‘B’

Pr{B} = (area of B) / (area of S)
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Probability of an event, cont.

What about the probability of either ‘A’ or ‘B’ ?
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Probability of either ‘A’ or ‘B’

Pr{A or B} = Pr{A} + Pr{B} - Pr{A and B}

Note: more formally the Pr{A and B} is denoted as Pr{A,B}
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Conditional probability

What about the probability of ‘B’ given ‘A’ occurred?

This is termed conditional probability (i.e., the probability of an event

under the condition that another event occurred)

Events follow each other all the time in reality.

Biol 520C: Statistical modelling for biological data 18



Conditional probability cont.

The probability of event B = Pr{B} = (area of B) / (area of S), but if

we know that ‘A’ happened...

Pr{B given that A occurred} = (area common to A and B) / (area of A)

or more formally, Pr{B|A} = Pr{A,B}/Pr{A}
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Conditional probability cont.

Pr{B|A} = Pr{A,B}/Pr{A} Pr{A|B} = Pr{A,B}/Pr{B}
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Independent events

Events are independent when knowing that one occurs does nothing to

change our idea about the probability of another event occurring.

If two events are independent of one another, then

Pr{A|B} = Pr{A} and Pr{B|A} = Pr{B}

And if we remember that

Pr{A|B} = Pr{A,B}/Pr{B} and Pr{B|A} = Pr{A,B}/Pr{A}}

then

Pr{A|B} = Pr{A,B}/Pr{B}

Pr{A} = Pr{A,B}/Pr{B}

Pr{A,B} = Pr{A}Pr{B}
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Joint Probability

Pr{A,B} is referred to as the joint probability of A and B.

You’ll often see this written as Pr{A ∩ B}

The ∩ symbol refers to the ‘intersection’ of A and B.
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Bayes’ Theorem

Wikipedia: In probability theory and statistics,

Bayes’ theorem (alternatively Bayes’s theorem,

Bayes’s law or Bayes’s rule) describes the

probability of an event, based on prior knowledge

of conditions that might be related to the event.

But what does that actually mean?
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Bayes’ Theorem Cont.

From earlier, we had:

Pr{A|B} = Pr{A,B}/Pr{B}

Rearranging this, we get:

Pr{A,B} = Pr{A|B} Pr{B}

Remembering that the probability of B given A is given by:

Pr{B|A} = Pr{A,B}/Pr{A}

We can get to:

Pr{B|A} = Pr{A|B} Pr{B}/Pr{A}
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Bayes’ Theorem Cont. Cont.

The mathematical description of Bayes’ Theorem is given as:

P(A|B) = P(B|A)P(A)
P(B)
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Bayes’ Theorem Multiple Outcomes

Bayes’ theorem is most useful when there are multiple, exclusive possible

outcomes, B1,B2... BN, and one must occur when A occurs.

Pr{Bi |A} = Pr{A|Bi}Pr{Bi}
N∑
j=1

Pr{A|Bj}Pr{Bj}
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Bayes’ Theorem Multiple Outcomes

Pr{B1|A} = Pr{A|B1}Pr{B1}
4∑

j=1

Pr{A|Bj}Pr{Bj}
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Bayes’ Theorem in Action

Question: I’ve flipped two coins, and I tell you 1 came up heads. What’s

the probability the other flip was heads?

Approach #1: If each coin flip is independent, and heads/tails are

equally probable, then:

Pr{Heads2 | Heads1} = Pr{Heads2} = 1/2

Approach #2: There are 4 possible outcomes: {HH, HT, TH, TT}. If 1

flip is heads, TT is impossible. If each combination is equally likely, then:

Pr{HH} = 1/3

Both approaches make intuitive sense, but both can’t be right.
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Bayes’ Theorem in Action

The challenge is how to use the information I’ve given to you that 1 flip

is heads.

What we want to know is:

Pr{HH | knowing one flip is H} = PR{HH, knowing one flip is H}
PR{knowing one flip is H}

Allowing all 4 sets of possible outcomes, we have:

Flip Results Prior probability Pr{H given flip results}
HH 1/4 1

HT 1/4 1/2

TH 1/4 1/2

TT 1/4 0
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Bayes’ Theorem in Action Cont.

Flip Results Prior probability Pr{H given flip results}
HH 1/4 1

HT 1/4 1/2

TH 1/4 1/2

TT 1/4 0

Next we need to calculate the joint probability of each outcome and you

knowing I flipped 1 heads:

Pr{HH, H} = Pr{HH} Pr{H given flip result} = 1/4 × 1 = 1/4

Pr{HT, H} = 1/4 × 1/2 = 1/8

Pr{TH, H} = 1/4 × 1/2 = 1/8

Pr{TT, H} = 1/4 × 0 = 0

So Pr{of knowing 1 flip is heads} = 1/4 + 1/8 + 1/8 = 1/2
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Bayes’ Theorem in Action Cont. Cont.

Pr{HH | knowing one flip is H} = Pr{HH, knowing one flip is H}
Pr{knowing one flip is H}

Pr{HH, knowing one flip is H} = 1/4

Pr{of knowing 1 flip is H} = 1/2

Pr{HH | knowing one flip is H} = 1/4
1/2 = 1/2

So, our first approach from earlier was correct.
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A Note on Bayes’ Theorem

You’ll often see people argue that the strength of Bayesian methods is the

ability to make use of ‘prior’ information (e.g., previously collected data).

Pr{Bi |A} = Pr{A|Bi}Pr{Bi}
N∑
j=1

Pr{A|Bj}Pr{Bj}

But in practice, people usually calculate the prior based on some existing

dataset, so you could skip this if you just used the original data.

A lot of the time you will also see people using ‘flat uninformative prior’,

which means the prior isn’t really doing anything meaningful.

The biggest benefit (in my opinion) comes from being able to use

computer algorithms to calculate the denominator (marginal).
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Probability Distributions

We’re going to finish by briefly reviewing a number of commonly used

probability distributions.

This list is not exhaustive, but it should be sufficient for allowing you to

calculate Pr{model|data} and Pr{data|model} for many ecological

scenarios.

You do not need to memorise the formulae, but you should be able to

recognise them, and understand their basic properties and use cases.
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Binomial distribution

The binomial distribution describes the probability of obtaining k yes/no

successes in a sample of size n, or in other words, the distribution of the

number of successful trials among a defined number of trials.

Parameters: n and p

Type: Discrete

Biological scenarios: Mark

recapture data, live vs dead survival

data, killed by a predator or not,

yes/no behavioural outcomes,

anything with a discrete yes/no

outcome.

PMF:
(
n
k

)
pk(1− p)n−k

where(
n
k

)
= n!

k!(n−k)!

Range: discrete (0 ≤ x ≤ n)

Mean: np

Variance: np(1− p)

Source: WikipediaBiol 520C: Statistical modelling for biological data 36
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Poisson distribution

The Poisson distribution describes the probability of a given number of

events occurring in a fixed interval of time or space.

Parameters: λ

Type: Discrete

Biological scenarios: Counts of a

species per unit time, the number of

mutations on a strand of DNA per

unit length, number of births/deaths

per year in a given age group, prey

caught per unit time.

PMF: Pr(x = k) = λke−λ

k!

Range: discrete (0,∞)

Mean: λ

Variance: λ

Source: Wikipedia
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Negative binomial distribution

The negative binomial distribution describes the number of failures in a

sequence of independent and identically distributed trials.

Parameters: p Probability per trial,

k Overdispersion parameter

Type: Discrete

Biological scenarios: Same as the

Poisson distribution, but allowing for

more heterogeneity because variance

6= mean.

PMF: Γ(k+r)
k!·Γ(r) p

k(1− p)r

Range: discrete (x ≥ 0)

Mean: pr
1−p

Variance: pr
(1−p)2
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Gaussian distribution

The Gaussian (or normal) distribution is a continuous, symmetrical

distribution that applies frequently in practice.

Parameters: µ and σ

Type: Continuous

Biological scenarios: Many.

Almost any measurement that is

continuous and symmetrically

distributed.

PDF: 1
σ
√

2π
e−

1
2 ( x−µ

σ )2

Range: (−∞,∞)

Mean: µ

Variance: σ2
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Log-normal distribution

The log-normal distribution is a continuous probability distribution of a

random variable whose logarithm is normally distributed.

Parameters: µ and σ

Type: Continuous

Biological scenarios: Many

continuous variables that can not

take negative values (e.g., weight,

height).

PDF:
1

xσ
√

2π
exp

(
− (ln x − µ)2

2σ2

)
Range: (0,∞)

Mean: exp
(
µ+ σ2

2

)
Var: [exp(σ2)− 1] exp(2µ+ σ2)
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Gamma distribution

The gamma distribution is a continuous probability distribution that

describes waiting times until a certain number of events take place. For

example a gamma distribution with shape = 3 and scale = 2 is the

distribution of the length of time (in years) you’d have to wait for 3

deaths to occur in a population with an average survival time of 2 years.

Parameters: shape = k and scale

= θ (both >0)

Type: Continuous

Biological scenarios: Survival time,

the age distribution of cancer

incidence, highly variable data where

negative numbers don’t make sense.

PDF:
1

Γ(k)θk
xk−1e−

x
θ

Range: (0,∞)

Mean: kθ

Var: kθ2
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Likelihood

What does all this have to do with fitting a straight line to some data

you ask?

We’ll get to that next lecture...
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