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Review



Probability theory & Bayes’ Theorem

Last lecture we covered some of the basic rules of probability theory

including joint and conditional probabilities and Bayes’ theorem.

We learned that the conditional probability of A given B occurred can be

formally written as:

Pr{A|B} = Pr{A,B}/Pr{B}

and that the joint probability of A and B can be formally written as:

Pr{A,B} = Pr{A∩B} = Pr{A}Pr{B}

We also learned how the basic rules of probability get us to the

mathematical description of Bayes’ Theorem.

And I told you that this was important for fitting a model to data.
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Likelihood



Probability distributions

Last lecture we saw that Pr{A|B} represents the conditional probability

of observing event ‘A’ given event ‘B’, but A and B are not restricted to

being events.

For example, we can extend this to indicate that the probability of

observing data Yi given parameter value p is Pr{Yi |p}.

The subscript i indicates that there are multiple possible outcomes, but

only one parameter value p.
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Probability distributions cont.

Let’s say I’ve gone out and counted things.

Count data often follow a Poisson distribution, so Pr{Yi |p} can be

written as:

Pr{Yi = k | rate parameter = λ} = λke−λ

k!

In other words, we have a mathematical description for saying “What is

the probability of observing our data (Yi ) given our hypothesis (rate

parameter = λ)?”
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Likelihoods vs. probabilities

This framework provides us with the tools we need to quantify the

probability of our observation given some hypothesis.

In most biological situations, however, all we have are the data and we

don’t know what the underlying model is. What we’re really interested is

asking “Given these data, how likely are the different hypotheses”.

This is where the concept of likelihoods comes in, and we write this:

L(hypothesis |data ) or L(pm|Y )

Note how here the data are not subscripted (we only observed one

outcome), but there are multiple possible parameter values pm.
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Likelihoods vs. probabilities cont.

The key distinction between likelihoods and probabilities is that with

probabilities the hypothesis is known, but the data are unknown whereas

with likelihoods the data are known but the hypothesis is unknown.

If we assume that the likelihood of the data given the hypothesis is

proportional to the probability, we can write:

L(pm|Y ) = c Pr{Y |pm}

Because we’re typically interested in relative likelihoods (not exact

values), the proportionality constant, c , can be set to 1
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Likelihoods vs. probabilities cont.

Ok, cool, but so what?
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Likelihoods vs. probabilities cont.

If L(pm|Y ) ∝ Pr{Y |pm}, and we have some data, and if we make some

distributional assumptions, we have a way of calculating the likelihood of

specific parameter values, and we can generalise this to any number of

parameters and any distribution!

For example, if we come back to those 2 crows I counted earlier we can

now ask (and answer!) what’s the more likely λ, 4, or 6?

L(λ = 4|2) = 42e−4

2! ≈ 0.15 L(λ = 6|2) = 62e−6

2! ≈ 0.045

Remember that the Poisson distribution has a PMF given by λk e−λ

k!
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Maximum likelihood



Maximum Likelihood

Likelihood gives us a framework of estimating the MOST likely value of λ

by systematically checking every possible value of Pr{2|λi}.

For our 2 crows, a plot of the likelihood as a function of λ looks like this:

The value of λ that maximises the likelihood is the maximum likelihood

estimate (MLE) of our parameter value
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Multiple observations

In most cases we probably have more than 1 data point though...

So let’s say I go out another day and count 4 crows. Now my data are

{2,4}, and our question is L(λ1|2, 4).

To answer this, we need to remember our probability theory basics.

If L(pm|A) ∝ Pr{A|pm}, then L(pm|A,B) ∝ Pr{A,B|pm}, so we now

know we need to calculate Pr{A,B|pm}

If we assume our observations are independent, then

Pr{A,B|pm} = Pr{A|pm} × Pr{B|pm}
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Multiple observations cont.

For our counts of 2 and 4 crows, a plot of the likelihood as a function of

λ looks like this:

Here, λ̂ = 3 is the maximum likelihood estimate (MLE)
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Multiple observations cont.

More generally, if we were to keep collecting data, we would keep

multiplying out probabilities to estimate λ

L(λ|xi ) =
n∏

i=1

λxi e−λ

xi !
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Log-likelihoods

Likelihoods tend to be very small numbers, so by convention we work

with log-likelihood in practice as it makes the math/computations easier.

And we actually minimise the negative log-likelihood (but functionally the

results are the same as maximising likelihoods)

In most cases, as the sample size increases, the negative log-likelihood

function becomes increasingly peaked around its maximum
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MLE in action

Let’s say I go out and measured the height of ten people. I come back

with {171,168,180,190,169,172,162,181,177,181} (in cm). If we assume

heights are normally distributed with a σ of 10 cm, we can estimate the

mean height, µ, using MLE and the general form of the Gaussian

distribution:

L(µ|xi ) =
10∏
i=1

1
σ
√

2π
e

1
2 (

xi−µ

σ )2

Plugging in data the resulting likelihood functions look like this:
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MLE in action cont.

The MLE estimate of the mean is 175.1, which is exactly the same as the

sample mean, so why go through all the extra effort?

In the likelihood framework, we can use the likelihood profile to identify

the 95% confidence intervals on our estimated parameter. E.g., a simple

rule is to place the bounds within 1.92 of the minimum log-likelihood.

So we can say that µ = 175.1 with 95% CIs of ∼ 169 — 181
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MLE and CIs.

Earlier I mentioned that as the sample size increases, the negative

log-likelihood becomes increasingly peaked around its maximum. What

would this do to the CIs?

More data narrows the CIs (and vice versa, less data increases the

amount of uncertainty in the MLE)
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Regression as a problem of MLE



MLE and fitting a line to data

We started our detour into probability theory and maximum likelihood

because we learned that the least-squares approach didn’t provide any

way of understanding how stochasticity entered into a system.

We’ve now picked up enough of the basics to go back to our linear

regression problem and fit a line to some data as probabilists.
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Regression as a problem of MLE

Our model is of the form:

yi = β0 + β1xi + εi

yi & xi are our data,

β0 & β1 are our unknown parameters,

and εi is our Gaussian distributed error with a mean of 0 and variance of

σ2, whose PDF is given by:

1
σ
√

2π
e−

1
2 ( x−µ

σ )2
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Regression as a problem of MLE cont.

Given our dataset (x1, y1), (x2, y2), . . . , (xn, yn), and assuming

independence in yi , the likelihood function be written:

L(xi ;β0, β1, σ
2|yi ) =

n∏
i=1

1
σ
√

2π
e−

1
2 (

yi−β0+β1xi
σ )2

For convenience, we work with negative log-likelihoods, which changes

this to:

L(xi ;β0, β1, σ
2|yi ) = n(log(σ) + 1

2 log(2π)) + 1
2σ2

n∑
i=1

(yi − (β0 + β1xi ))2
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Regression as a problem of MLE cont.

We could manually plug in all of the possible values of β0, β1, and σ2,

but that would be a lot of work.

After some math that we won’t go over, we get the following 3

estimators:

β̂1 =

n∑
i=1

(xi−x̄)(yi−ȳ)

n∑
i=1

(xi−x̄)2

β̂0 = ȳ − β̂1x̄

σ̂2 = 1
n

n∑
i=1

(yi − (β̂0 + β̂1xi ))2
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Stochasticity & CIs

The MLE estimators for the slope and the intercept exactly match the

least squares estimators, and σ2 is the mean squared error.

So what did we gain by making a Gaussian-noise assumption and

estimating the parameters via maximum likelihood?

i) A description of the system’s stochastic component (which allows us

to make more realistic predictions)

ii) A framework for placing confidence intervals on our parameter

estimates using the likelihood profiles (which allows us to make

formal statistical inference on the parameters)
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Stochasticity and predictions

With a purely deterministic model, we can

understand the mechanisms underlying a system,

but our predictions inherently lack stochasticity

and the outcome is always the same.

But real systems are full of stochasticity, so the predictions of purely

deterministic models are almost certainly going to be wrong.

With a stochastic component,

outcomes are variable and models

provide a distribution of the values

that yi can be expected to take
Source: Zuur et al. 2009
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Stochasticity and predictions example

For example, let’s say we know that the wingspan (in mm) a species of

insect is proportional to its mass (in g), with a slope of 5 and intercept of

10. How wide does this deterministic model predict our species’ wings

will be when x = 2g?

y = 10 + 5× 2 = 20mm

In other words, this model predicts our species of insect will have a

wingspan of 20 mm when their mass is 2g, not 20.1, not 20.00001, but

exactly 20.

How informative is this? What if we measure an insect with weight = 2

and wingspan = 21? What does this tell us about our model?
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Stochasticity and predic. examp. cont.

What if we also know that εi ∼ N (0, 2)?

yi = 10 + 5xi + εi

y = 10 + 5× 2 + εi = 20 + εi

y = N (20, 2)

Now we have a prediction of the distribution of all the values that yi can

be expected to take. How informative is this?
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A note on predictions

Confidence intervals tell us how well we have estimate a parameter of

interest, such as a mean or regression coefficient.

ŷ ± tcrit × σ
√

1
n

For linear regression, 95% CIs tell us that there is a 95% probability that

the true linear regression line of the population will lie within the

confidence interval of the regression line calculated from the data.

What happens to our CIs when n→∞?
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A note on predictions cont.

In the limit where n→∞, we will have perfect information on the

population so our CIs collapse to the population value, but our

predictions still need to account for stochasticity in the individual values.

To account for both the uncertainty in estimating the parameters, plus

the random variation of the individual values we use prediction intervals.

ŷ ± tcrit × σ
√

1 + 1
n .

What happens to prediction intervals when n→∞? Which will be wider,

confidence intervals, or prediction intervals?
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MLE and Confidence Intervals

Without a measure of (un)certainty, it is impossible to tell if two

numbers are meaningfully different from one another.

The same is true for model parameters. We are estimating their values

based in some amount of data, which represents a subset of the infinite

number of possibilities we could have actually observed.

For example, if model fittings

suggest an intercept of 9, is this

meaningfully different from 0?

The answer depends on the amount

of information in our data, the

(un)certainty in our estimate, and

the shape of our likelihood profile.
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