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Model Residuals



Model Residuals

So far we’ve been fitting models of the general form:

yi = β0 + β1xi + . . .+ εi

A model isn’t always a perfect representation of what’s going on in the

real world, and there will be deviations between what actually happened

(i.e., the observed values), and what the model predicted would happen

(i.e., the predicted values).

The difference between the predicted and observed value is called the

residual:

Residual = Observed – Predicted
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Residuals as diagnostic tools

By definition, if these models are

behaving properly they should result

in some amount of residual spread

around values predicted by a model’s

deterministic component.

Source: Zuur et al. 2009

Because residuals are supposed to have very specific behaviour they

provide a useful tool for evaluating how well a model fits the data and

that the assumptions of the model are being met.

Today we’ll cover how to interpret a model’s residuals to help you both

understand and improve a regression model.

Biol 520C: Statistical modelling for biological data 5



Types of Residuals

The first thing to know about calculating residuals is that there are three

forms of residuals:

• Ordinary residuals.

• Standardised residuals.

• Studentised residuals.
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Ordinary Residuals

Ordinary residuals are the most commonly used residuals.

They are defined as the difference between the expected and observed

values.

For a simple linear regression model of the form yi = β0 + β1xi

Observedi = yi

Expectedi = β0 + β1xi

Residuali = Observedi – Expectedi = yi − β0 + β1xi
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Standardised Residuals

Standardised residuals are ordinary residuals divided by their standard

deviation and are useful for identifying outliers.

Standardised Residuali = Residuali
Standard Deviation of Residuals

Standardised residuals will have mean = 0 and standard deviation = 1.

Rule of thumb: If your data are normally distributed, 95% of your data

should be ±2 SDs from the mean. If you have something greater than

that, then you’re probably looking at an outlier.
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Studentised Residuals

If an outlier influences a regression model to

such an extent that the estimated fit is

“pulled” towards the outlier, standardised

residuals may not flag it as an outlier

The basic idea behind studentised residuals is to drop observations one at

a time and refit the regression model on the remaining n–1 observations.

Then, we compare the observed yi values to their expected values based

on the models with the ith observation removed. This produces deleted

residuals. Standardising these residuals produces studentised residuals.

If data point i is ‘influential’ it pulls the regression line towards itself, and

the observation would be close to the predicted response. But, if you

removed the outlier, then the regression line would bounce back to the

bulk of the data, resulting in a large studentised residual.
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Calculating Ordinary Residuals

We’ll start with a best case scenario by fiting a model to some data

simulated from a simple linear process with Gaussian distributed error.

linear <- function(x){

B_0 <- 0

B_1 <- 1

sig <- 2

eps <- rnorm(n = length(x), sd = sig)

y = B_0 + B_1*x + eps

y}

x <- runif (60, min = 0, max = 20)

y <- linear(x)

MODEL <- lm(y ~ x)

Residuals:

Min 1Q Median 3Q Max

-3.7911 -1.1243 -0.1473 0.9906 4.5536

Coefficients:

Estimate Std. Error t value Pr(>t)

(Intercept) 0.35535 0.49162 0.723 0.473

x 0.98904 0.04255 23.244 <2e-16 ***

Residual standard error: 1.763 on 58 degrees of freedom

Multiple R-squared: 0.9031 , Adjusted R-squared: 0.9014

F-statistic: 540.3 on 1 and 58 DF , p-value: < 2.2e-16
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Calculating Ordinary Residuals Cont.

Ordinary residuals = Observed – Predicted.

For our simulated dataset and fitted model

we can do this in R:

Observed <- y

Predicted <- MODEL$coefficients [1] + MODEL$coefficients [2]*x

Residuals <- Observed - Predicted

head(Residuals)

[1] 2.4202350 -0.4793203 0.5456157 -0.2637988 -3.0652396 -0.9883308

Alternatively, you can use the residuals() function, ultimately, the

result is the same

Residuals2 <- residuals(MODEL)

head(Residuals2)

1 2 3 4 5 6

2.4202350 -0.4793203 0.5456157 -0.2637988 -3.0652396 -0.9883308
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Residuals and R2

The residuals measure how accurately a fitted model predicts the

observed data.

They are also used to calculate the coefficient of determination (i.e., R2).

R2 is the proportion of the variance in the response variable that is

predictable from the predictor(s).

SS_res <- sum(Residuals ^2)

SS_tot <- sum(( Observed - mean(Observed))^2)

Rsquare <- 1 - (SS_res/SS_tot)

Rsquare

[1] 0.9030564
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A note on R2

Gaussian regression models are of the form yi = β0 + xiβ1 + εi ,

where εi ∼ N (0, σ2) ...and R2 is the proportion of the variance in the

response variable that is predictable.

By definition the R2 can’t explain σ2, so it’s an easy metric to break

(even if all the other terms are estimated perfectly).
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Inspecting Residuals

The most useful way to examine the residuals is by plotting the predicted

values of on the x-axis, and the residuals on the y-axis.

The distance from the line at 0 is how bad the prediction was for that

value. Positive values for the residual mean the prediction was low,

negative values mean the prediction was high, 0 means the model was

exactly correct.
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Inspecting Residuals Cont.

Notice how in this scenario the residuals:

• Are evenly distributed around 0

• Have low single digit values (i.e., on the order of 2, not 200)

• Lack any clear patterns

This is what you hope to see if a model is performing well. The

predictions aren’t far from the observations, and there are no remaining

patterns that aren’t being explained by the model. If the residuals aren’t

evenly distributed vertically, or they have an outlier, or they have clear

patterns, then the model has room for improvement.
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Diagnosing Residuals

Diagnosing residuals is part science, part art.

The more residual plots you see, the better you’ll get at seeing patterns

and diagnosing issues.

Let’s take a look at what happens to the residuals when there are known

issues in the data.
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Outliers

Problem: What if the normal range of your data was ∼0 to 20, but one

of your datapoints had an x value of 80?

Let’s use the exact same data as before, but add an outlier

x <- c(x, 80)

y <- c(y, 2)

MODEL <- lm(y ~ x)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-20.110 -3.024 1.158 3.905 9.580

Coefficients:

Estimate Std. Error t value Pr(>t)

(Intercept) 8.39362 1.03457 8.113 3.52e-11 ***

x 0.17146 0.06731 2.547 0.0135 *

---

Residual standard error: 5.428 on 59 degrees of freedom

Multiple R-squared: 0.09907 , Adjusted R-squared: 0.0838

F-statistic: 6.488 on 1 and 59 DF , p-value: 0.01349

Remember, our intercept was 0 and our slope was 1. What about the R2
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Outliers Cont.

Implications: Because the outlier is so far

from the bulk of the data, it has a

disproportionate effect on the model and

pulls the fit towards itself

How to solve the issue:

• It’s possible that this is a measurement or data entry error. If this is the

case, remove the outlier as it is providing misinformation.

• It’s possible that what appear to be just a couple outliers are in fact the

result of a non-linear relationship between x and y. Consider adding a

variable or changing the model.

• If the data is not an entry/measurement error, you should assess the

impact of the outlier. E.g., note the coefficients of your current model,

then filter out that datapoint from the regression. If the model doesn’t

change much, there’s not much to worry about. If there’s a big change,

examine the models and decide which one feels better to you given your

knowledge of the system. It’s okay to discard outliers in a defensible way.
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Correction: Filtering outliers

Standardised Residuali = Residuali
Standard Deviation of Residuals

Observed <- y

Predicted <- MODEL$coefficients [1] + MODEL$coefficients [2]*x

Residuals <- Observed - Predicted

Residuals <- Residuals/sd(Residuals)

head(Residuals)

[1] -0.2371666 -0.4519790 0.3482399 1.2166389 -1.4501977

1.0522036

Alternatively, you can use rstandard()

Residuals2 <- rstandard(MODEL)

head(Residuals2)

1 2 3 4 5 6

-0.2378209 -0.4524664 0.3481916 1.2208638 -1.4561621 1.0556393
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Correction: Filtering outliers cont.

R_Student <- vector ()

for(i in 1: length(x)){

x_sub <- x[-i]

y_sub <- y[-i]

SUB_MODEL <- lm(y_sub ~ x_sub)

Predicted <- coef(SUB_MODEL)[1] + coef(SUB_MODEL)[2]*x[i]

Observed <- y[i]

RESIDUAL <- Observed - Predicted

R_Student[i] <- RESIDUAL/sd(residuals(SUB_MODEL))

}

head(R_Student)

[1] -0.2406048 -0.4575714 0.3514427 1.2513493 -1.5017222

1.0782553

R_Student2 <- rstudent(MODEL)

head(R_Student2)

1 2 3 4 5 6

-0.2359099 -0.4493959 0.3455835 1.2260592 -1.4704338 1.0566817
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Correction: Filtering outliers cont.2

Both standardised and studentised residuals provide strong evidence to

support dropping the outlier.

Based on this information, you would then drop the outlier and move

forward with your analysis.
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Unbalanced x-axis

Problem: Imagine that, during your data collection, your x values were

mostly centered around 5, but every now and then you got a very high

value.

x <- c(rnorm (180, 5, 2), runif(20, 0, 60))

y <- linear(x)

MODEL <- lm(y ~ x)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-5.0696 -1.6995 0.0146 1.7043 6.2317

Coefficients:

Estimate Std. Error t value Pr(>t)

(Intercept) -0.06137 0.19602 -0.313 0.755

x 0.99320 0.01617 61.422 <2e-16 ***

---

Residual standard error: 2.21 on 198 degrees of freedom

Multiple R-squared: 0.9501 , Adjusted R-squared: 0.9499

F-statistic: 3773 on 1 and 198 DF, p-value: < 2.2e-16
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Unbalanced x-axis residuals

And the residuals on this fit would look like this
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Unbalanced x-axis cont.

Implications: Sometimes there’s actually nothing

wrong with your model. Other times, however, an

unbalanced x-axis can result in similar problems

caused by outliers as we just saw (especially for

non-linear relationships). Most of the time you’ll

find that the model was directionally correct but

with inaccurate parameter estimates.

How to solve the issue:

• If you’re lucky, no correction is needed.

• The solution to this is almost always to transform your data, typically an

explanatory variable.

• If you can, collect more data.

• It’s also possible that the model is missing a variable.
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Missing Variables

Problem: One of the most common reason why a model struggles to fit

a particular dataset is that not all the necessary variables have been

included. This particular issue results in a wide range of residual

structures, and has a lot of possible solutions.

linear _2param <- function(x, x_2) {

B_0 <- 0

B_1 <- 2

B_2 <- 20

sig <- 2

eps <- rnorm(n = length(x), sd = sig)

y <- B_0 + B_1*x + B_2*x_2 + eps

y}

x <- runif (100, 0, 40)

x_2 <- rbinom (100 ,1 ,.5)

y <- linear _2param(x, x_2)

MODEL <- lm(y ~ x)

Coefficients:

Estimate Std. Error t value Pr(>t)

(Intercept) 7.69031 2.11970 3.628 0.000456 ***

x 2.10136 0.09428 22.288 < 2e-16 ***

---

Residual standard error: 10.41 on 98 degrees of freedom

Multiple R-squared: 0.8352 , Adjusted R-squared: 0.8335

F-statistic: 496.7 on 1 and 98 DF , p-value: < 2.2e-16
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Missing variables residuals

And the residuals on this fit would look like this
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Missing Variables cont.

Implications: Notice how the slope is still

accurate, but the estimated intercept is both off,

and significant. The model isn’t completely

worthless, but it’s definitely not as good as if you

had all the variables you needed.

How to solve the issue:

• Depending on the magnitude of the issue, you probably need to deal with

the missing variable problem.
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Missing Variables Solution

Attempting a fix: Let’s add a second parameter to our model.

MODEL2 <- lm(y ~ x + x_2)

Call:

lm(formula = y ~ x + x_2)

Residuals:

Min 1Q Median 3Q Max

-5.2565 -1.4237 0.1298 1.3260 4.3949

Coefficients:

Estimate Std. Error t value Pr(>t)

(Intercept) -0.45906 0.45905 -1.0 0.32

x 2.00473 0.01754 114.3 <2e-16 ***

x_2 20.38987 0.41025 49.7 <2e-16 ***

---

Residual standard error: 2.029 on 97 degrees of freedom

Multiple R-squared: 0.9934 , Adjusted R-squared: 0.9933

F-statistic: 7349 on 2 and 97 DF, p-value: < 2.2e-16

The parameter estimates match the model we simulated from, and fitted

model makes far more accurate predictions because it’s able to take into

account the additional information from x2
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Non-linearity

Problem: Imagine a situation where y tends to be small at small values

of x, large and intermediate values of x, but then small again at the

largest values of x. This scenario represents a non-linear relationship

between x and y, which ends up being very common in practice.

quad <- function(x) {

B_0 <- 0

B_1 <- 80

B_2 <- -2

sig <- 40

eps <- rnorm(n = length(x), sd = sig)

y <- B_0 + B_1*x + B_2*x^2 + eps

y}

x <- rnorm (100, mean = 20, 10)

y <- quad(x)

MODEL <- lm(y ~ x)

Coefficients:

Estimate Std. Error t value Pr(>t)

(Intercept) 478.594 67.807 7.058 2.44e-10 ***

x 5.247 3.175 1.653 0.102

---

Residual standard error: 330.8 on 98 degrees of freedom

Multiple R-squared: 0.02712 , Adjusted R-squared:

0.01719

F-statistic: 2.732 on 1 and 98 DF , p-value: 0.1016
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Non-linear residuals

And the residuals on this fit would look like this
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Non-linear relationships cont.

Implications: If your model is off, as in the

example above, your predictions will be effectively

worthless. In situations like this the model is doing

very little to explain any relationship between x and

y. You can see this by the fact that the residuals

(i.e., what’s left after the model has made a

predicition) look exactly like the data.

How to solve the issue:

• Sometimes patterns like this can be overcome by transforming a

variable.

• If the pattern is actually as clear as this example, you probably need

to add a non-linear term.

• Or, as always, it’s possible that the issue is a missing variable.
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Non-linear Solution

Attempting a fix: You might notice that the shape here is typically

associated with a quadratic formula: yi = β0 + β1xi + β2x
2
i

So if we add an x2 term, our model might have a better chance of fitting

the data.

MODEL2 <- lm(y ~ x + I(x^2))

Residuals:

Min 1Q Median 3Q Max

-88.31 -29.03 -6.62 33.34 95.89

Coefficients:

Estimate Std. Error t value Pr(>t)

(Intercept) 2.82349 11.09741 0.254 0.8

x 80.22120 1.10150 72.829 <2e-16 ***

I(x^2) -2.02119 0.02742 -73.706 <2e-16 ***

---

Residual standard error: 44.04 on 97 degrees of freedom

Multiple R-squared: 0.9829 , Adjusted R-squared: 0.9826

F-statistic: 2793 on 2 and 97 DF, p-value: < 2.2e-16

The residuals are slightly unbalanced, but otherwise decent looking.
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Diagnosing Residuals in Practice



Diagnosing Residuals Ex. 1
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Diagnosing Residuals Ex. 2

Biol 520C: Statistical modelling for biological data 36



Diagnosing Residuals Ex. 3
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Diagnosing Residuals Ex. 4
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Diagnosing Residuals Ex. 5

Biol 520C: Statistical modelling for biological data 39



Diagnosing Residuals Ex. 6
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Residuals summary

Residuals are what’s left in your data after your model has done its work.

By definition, the residuals of a standard linear regression model should

be normally distributed.

Deviations from this expectation provide you with clues on how you

might be able to improve the fit of your model.

Biol 520C: Statistical modelling for biological data 41


	Model Residuals
	Diagnosing Residuals
	Diagnosing Residuals in Practice

