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The Problem of Overfitting



Adding Model Structure

We started by fitting simple linear regression models of the form:

yi = β0 + βxi + εi

We then extended this to multiple linear regression of the form:

yi = β0 + β1x1i + β2x2i + . . .+ βnxni + εi

Last lecture we covered linear mixed effects model that add additional

structure to account for correlations within groups:

yi = Xiβ + Zibi + εi
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The Problem of Overfitting

Lecture by lecture we’ve been increasing the

complexity of our models

But more complexity does not necessarily

mean improved performance, or that the

parameters are meaningful.

This puts us in a situation where we need to strike an optimal balance

between having too many or too few features in our models.
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Overfitting and prediction in action

Walters & Ludwig (1981) simulated fish population

dynamics using complex age-structured model

(different births and deaths for fish of different

ages).

When data were realistically sparse and noisy a simple model without age

structure resulted in the best predictions, even though they knew for a

fact that there were age differences (!)

Why? Data contain a fixed amount of information (limited by resources,

time, instrument precision, etc.) and as we estimate more and more

parameters that information gets spread thinner and thinner.

For Walters & Ludwig, spreading the information across age classes

meant each age class’ dynamics were included, but poorly estimated.
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The Problem of Overfitting Cont.

An underfit model fails to accurately

predict the data that were used to fit the

model, and test datasets or future

conditions.

An overfit model gives a very low

prediction error on the dataset used to fit

the model, but has a very high prediction

error on test data.

This happens because you’re fitting the

noise not the signal.
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Adding complexity

In practice, adding features/complexity to a model usually boils down to

answering the question:

Does adding an extra parameter improve the fit sufficiently to justify the

additional complexity?

... or seen another way:

Is there enough information in my data to support the additional

complexity that comes with an extra parameter?

Note: Excluding a parameter does not necessarily mean an effect does

not exist. It does mean we can’t estimate it in a meaningful way from the

information we have on hand.
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Model selection

The goal of modelling is to identify the simplest model possible that

captures all of the most important features of our data/system.

The goal of model selection is to know whether adding another

parameter to our model not only improves the performance, but improves

it by some specific amount (i.e., not just marginal gains) in order to

minimise the risk of overfitting. If the more complex model doesn’t pass

this threshold, then it is rejected in favour of the simpler model.

Model selection highly controversial, but extremely important. We’re

going to cover two approaches:

1. Likelihood-ratio tests

2. Information criteria
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Likelihood-Ratio Tests



Likelihood-Ratio Test

The likelihood-ratio test compares a pair of nested models based on the

ratio of their likelihoods.

λLR = −2 ln
[
L(Reduced model)
L(Full model)

]

The likelihood-ratio test statistic is often expressed as a difference

between the log-likelihoods

λLR = −2(ln[L(Reduced)]− ln[L(Full)])
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Nested Models

A ‘simple’ model is nested in a ‘complex’ model if the full model reduces

to the simpler model when parameters are set to some fixed values

(usually 0, 1, or ∞).

For example:

yi = β0 + β1x1i + β2x2i + εi

if we set β2 to 0, then:

yi = β0 + β1x1i + εi

So the models are nested

y = ax
1+( a

b x) (Beverton-Holt)

if we set b →∞, then:

y = ax (Linear model)

Again the models are nested
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Nested Models

A ‘simple’ model is nested in a ‘complex’ model if the full model reduces

to the simpler model when parameters are set to some fixed values

(usually 0, 1, or ∞).

For example:

yi = β0 + β1x1i + εi is not nested in yi = β0 + β2x2i + εi

because if we set β1 to 0, then:

yi = β0 + εi

Both are simple linear models, and might even be based on the same

data, but they are not nested.
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Nested distributions

Both the deterministic and stochastic components of models can be

nested.

For example:

The Poisson distribution is nested in the negative binomial distribution.

The binomial distribution is nested in the beta-binomial distribution

In other words, likelihood ratio tests can be used to identify both

deterministic and stochastic components of your model (we’ll cover

non-gaussian models later, but keep this in mind).
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The test statistic

So how does being able to quantify λLR help us identify the best model

structure?

According to Wilks’ theorem, as the sample size n approaches ∞, the

test statistic λLR will be chi-squared distributed with degrees of freedom

equal to difference in the number of parameters between the two models.

This implies that we can compare λLR to the χ2 value corresponding to a

desired statistical significance threshold (usually α = 0.05) as an

approximate statistical test.
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Likelihood ratio test in R

library(nlme)

data <- read.csv("Ant_Richness.csv")

FIT <- gls(num_sp ~ latitude + elevation , data = data , method = "ML")

FIT_Reduced <- gls(num_sp ~ latitude , data = data , method = "ML")

lambda <- -2*(FIT_Reduced$logLik - FIT$logLik)

pchisq(lambda , df = 1, lower.tail=FALSE)

0.001948725

anova(FIT , FIT_Reduced)

Model df AIC BIC logLik Test L.Ratio p-value

FIT 1 4 16.11769 20.48186 -4.058844

FIT_Reduced 2 3 23.71490 26.98803 -8.857452 1 vs 2 9.597217 0.0019

This is telling us that the extra parameter is resulting in a significant

improvement to the model, so the extra complexity is worth the cost.
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Limitations of LRTs

With only a small number of nested models

to compare, likelihood ratio tests are quick

easy, and statistically efficient.

As the complexity of the full model

increases, the number of pairwise LRTs

increases dramatically and soon becomes

unwieldy.
(Hacho l et al., 2017)

If some of the models aren’t nested in one another, there is no way to

compare them using LRTs.
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Information Criteria



Information Criteria

Information criterion (IC) approaches (sometimes called ‘Information

Theoretic’; IT approaches) can compare all models at once, avoiding the

need to cary out multiple pairwise comparisons, and do not require

nested models.

In practice, all IC methods reduce to finding the model that minimises

some ‘criterion’ that is the sum of a term based on the likelihood and a

penalty term

IC ≈ L(model) + penalty term
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Kullback-Leibler Information

IC approaches are based on Kullback-Leibler

information.

K-L information represents the information lost

when model gi is used to approximate full reality

(f ), or the distance between model gi and reality.

The goal is then to select the model that minimises

K-L information loss (i.e., the model that’s closest

to reality, f ).

The problem is that K-L information loss cannot be

computed or estimated.

(Burnham et al., 2011)
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Akaike Information Criterion

In the early 1970s, Hirotogu Akaike made a major breakthrough when he

found a formal relationship between K-L information and maximum

likelihood (Akaike, 1998).

He focused on the double expectation of the second term of the K-L

information and found that, for large sample sizes, this can be estimated

simply as ln(L)− K , where K is the total number of estimable

parameters in the model.

Akaike multiplied both terms by -2 to get his now famous:

AIC = −2 ln(L) + 2K

Note: The term −2 ln(L) is well known among statisticians as the ‘deviance’, a goodness-of-fit statistic for a statistical model.
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Akaike Information Criterion Cont.

K-L information represents the distance

between model gi and reality.

Because we can’t estimate ‘reality’, we

instead rely on AIC (or other IC).

We don’t know how far the models are from

the truth, but their relative positions should

be the same, so we can now rank them

amongst one another.

Low K-L information means closer to reality,

so with AIC, the lower the value the better.

(Burnham et al., 2011)
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Small sample size bias correction

Akaike’s derivations/approximations were based on large sample sizes.

These are not necessarily valid when sample sizes are small.

When the sample sizes are small, there is a good chance that AIC will

overfit and select models that have too many parameters.

A small sample size bias correction for AIC was derived that increases the

penalty term and is more frequently used in practice. This criterion is

denoted as AICc to make it distinct from AIC, and is given by:

AICc = AIC + 2k2+2k
n−k−1

Question: What happens when n→∞?
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AICc Model Selection

The actual AICc values are not particularly

interesting in themselves. It’s the

differences, or the ∆AICc values, that are

the key to ranking the models.

When picking among a set of potential

models, we select the one with the lowest

AICc value of the bunch.

The ∆AICc values for any given model are

linked to the evidence ratio for the best

model as exp[− 1
2 ∆AICc].

For example: A model with a ∆AICc of 2 is

∼2.7 times less likely than the best fit

model, and a model with a ∆AICc of 50 is

72 billion times less likely

∆AICc Evidence Ratio

2 2.7

4 7.4

6 20.1

8 54.6

9 90

10 148.4

11 244

12 403

13 665

14 1,097

15 1,808

20 22,026

50 72 billion

(Burnham et al., 2011)
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Relationship between ∆AIC and LRTs

The likelihood-ratio can be expressed as a difference between the

log-likelihoods:

λLR = −2(logL(θ1)− logL(θ2))

= −2 logL(θ1) + 2 logL(θ2)

The ∆AIC between a pair of models is

∆AIC = AICθ1 −AICθ2

= (−2 logL(θ1) + 2K1)− (−2 logL(θ2) + 2K2)

= −2 logL(θ1) + 2K1 + 2 logL(θ2)− 2K2

= −2 logL(θ1) + 2 logL(θ2)− 2(K2 − K1)

∆AIC = λLR − 2(K2 − K1)

If K1 = K2, then LRT = ∆AIC.
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AICc model selection in R

library(nlme)

data <- read.csv("Ant_Richness.csv")

FIT <- gls(num_sp ~ latitude + elevation , data = data , method = "ML")

k <- 4 #Intercept , 2 params , and the variance

-2*FIT$logLik + 2*(k)

[1]16.11769

AIC(FIT)

[1]16.11769

AIC(FIT) + (2*k^2 + 2*k)/(nrow(data) - k - 1)

[1] 18.47063

library(MuMIn)

AICc(FIT)

[1] 18.47063

Biol 520C: Statistical modelling for biological data 26



AICc model selection in R cont.

Let’s compare all possible models

FIT <- gls(num_sp ~ latitude + elevation , data = data , method = "ML")

FIT_el <- gls(num_sp ~ elevation , data = data , method = "ML")

FIT_lat <- gls(num_sp ~ latitude , data = data , method = "ML")

INTERCEPT <- gls(num_sp ~ 1, data = data , method = "ML")

AICc(FIT); AICc(FIT_el); AICc(FIT_lat); AICc(INTERCEPT)

[1] 18.47063

[1] 24.67657

[1] 25.04824

[1] 31.07926

This favours the full model. But by how much?

AICc(FIT_el) - AICc(FIT)

[1] 6.205939

1/exp ( -(1/2) *6.205939)

[1] 22.26397

AICc(INTERCEPT) - AICc(FIT)

[1] 12.60863

1/exp ( -(1/2) *12.60863)

[1] 546.9268

In a paper we would report that the next best model had a ∆AICc of

∼6.2, or was ∼22 times less likely, and the intercept only model had a

∆AICc of ∼12.6 and was >546 less likely than the full model.
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AICc model selection in R cont.2

This process is automated by the dredge() function in the MuMIn

package.

FIT <- gls(num_sp ~ latitude + elevation , data = data , method = "ML")

dredge(FIT)

Global model call: gls(model = num_sp ~ latitude + elevation , data = data , method = "ML")

---

Model selection table

(Intrc) elvtn lattd df logLik AICc delta weight

4 11.120 -0.001373 -0.2018 4 -4.059 18.5 0.00 0.922

2 2.489 -0.001613 3 -8.672 24.7 6.21 0.041

3 12.390 -0.2388 3 -8.857 25.0 6.58 0.034

1 2.114 2 -13.224 31.1 12.61 0.002

Models ranked by AICc(x)
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Other IC

Since the advent of AIC, a number of other IC methods have been

developed. In essence they all reduce to the combination of some term

based on the likelihood and a penalty term based on model complexity.

IC ≈ L(model) + penalty term

The Bayesian information criterion (BIC) BIC was developed by Gideon

Schwarz as an alternative to AIC with a larger penalty term:

BIC = −2 ln(L) + k ln(n)

The Quasi-AIC (QAIC) is an alternative that corrects for overdispersion:

QAIC = −2 ln(L)
ĉ + 2K

When ĉ = 1 there is no overdispersion and QAIC = AIC.
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IC Considerations



Model Criticism

Because we can’t estimate ‘reality’, IC values only

provide relative information (i.e., one model is

always going to win out over other models).

Just because a model is the best fit out of a pool

of candidates doesn’t mean it’s any good.

After identifying a candidate model it’s important

to check all of the assumptions, and test the

performance to make sure it’s function reasonably

well.

For example, comparing with the intercept only

model tells us how much of an improvement our

model is over simply looking at the mean.

(Burnham et al., 2011)
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Likelihoods and comparable data

IC are based on a model’s likelihood. The likelihood is the probability of

some model given data {x}

L(θ|x)

Models don’t need to be nested, but if there are any differences in the

datasets, the likelihoods, and therefore the IC, are not comparable (this

can be a real problem in practice depending on if your data have NA

values, and how they get handled in R).
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No clear winner?

Sometimes IC based model selection leads to a clear ‘winner’, other times

the differences between the top models are miniscule e.g. ∆AICc of 0.1

(evidence ratio of ∼ 1)

What would you do in this situation?

This is where most of the controversy in model selection comes from, and

we’ll cover some options for handling that situation next lecture.
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