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The ∆AIC Grey Zone



Recap

Last lecture we covered two approaches for model selection:

1. Likelihood-ratio tests

LRTs are quick easy, well grounded theoretically, result in clear

outcomes, but become unwieldy for complex models.

If some of the models aren’t nested in one another, there is no way

to compare them using LRTs.

2. Information criteria

IC don’t require nested models, well grounded theoretically, easy to

apply in practice.

Just because a model is the best fit out of a pool of candidates

doesn’t mean it’s any good.

Sometimes IC approaches result in a clear winner, other times...
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No clear winner?

Sometimes ∆AICc based model selection leads to a clear ‘winner’, other

times the differences between the top models are miniscule.

As a modeler, you need to use this information to make some decision.

But what do you do?

As good scientists, we turn to the literature for an answer:

Burnham & Anderson (2002)

1. ∆AIC 0–2: Substantial supp.

2. ∆AIC 4–7: Considerably less supp.

3. ∆AIC >10: Essentially no supp.

Burnham et al. (2011)

1. ∆AIC 0–7: Plausible

2. ∆AIC 7–14: Equivocal

3. ∆AIC >14: Implausible

Not very helpful...
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∆AIC of 2

Because there are no p-values or clear cutoffs tied to ∆AIC values, the

literature is confused on what we should do.

One recurring approach is to use ∆AIC <2 as a cut-off, which comes

from the recommendations of Burnham & Anderson (2002).

Lower AIC values are better (all else being equal), but what’s so special

about ∆AIC <2?
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The ∆AIC = 2 Threshold



∆AIC of 2 and the evidence ratio

The ∆AIC values for any given model are linked to the evidence ratio for

the best model as e−( ∆AIC
2 ).

With ∆AIC . 1.38 the evidence < 2, with ∆AIC . 2, evidence < 3.

So in the ∆AIC < 2 regime models are only ∼twice as likely as the AIC

‘best’ model.
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∆AIC of 2 and AIC

The evidence ratio gives us a feel for why this range of values might be

important, but it’s still a bit murky.

The equation for AIC is:

AIC = −2 ln(L) + 2K

The equation for ∆AIC is:

∆AIC = −2 logL(θ1) + 2 logL(θ2)− 2(K2 − K1)

What happens if two models have the ∼ the same likelihood and only

differ by one parameter?
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∆AIC of 2 and AIC cont.

If L(θ1) ≈ L(θ2) and K1 = K2 + 1

∆AIC = −2 logL(θ1) + 2 logL(θ2)− 2(K2 − K1)

∆AIC = −2 logL(θ1) + 2 logL(θ1)− 2(K2 − (K2 + 1))

∆AIC =
(((

((((
(((

((
−2 logL(θ1) + 2 logL(θ1)− 2(��K2 −��K2 − 1)

∆AIC = −2(−1) = 2

Because the penalty term is 2K, models with the ∼ the same likelihood

that only differ by one parameter will, by definition, have a ∆AIC of 2.
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∆AIC of 2 and AIC2

So this sheds some more light on the ∆AIC of 2 threshold and explains

why in practice you’ll find models that differ from the ‘best fit’ model by

only one parameter within the ∆AIC of 2 threshold.

Source: Mark Brewer

Second best model is M1 + Var5, third best model is M1 + Var3, fourth

best is M1 + Var1, all within the ∆AIC of 2 threshold.
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∆AIC of 2 and p-values

The likelihood ratio test allows for estimating p-values for the support

between a pair of models.

P = Pr(χ2
k > λ)

∆AIC = λ− 2(K2 − K1)

P = Pr(χ2
k > ∆AIC + 2(K2 − K1))

(Murtaugh, 2014)

There’s a one-to-one relationship between ∆AIC and p-values e.g., a

∆AIC of 2 when models differ by 1 parameter corresponds to a p-value of

∼0.047 (but a p-value of ∼0.015 when they differ by 10 parameters).
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∆AIC of 2 and p-values

Putting the pieces together:

∆AIC = 2 corresponds to an evidence ratio

of ∼2.7

When two models have identical likelihoods,

they can not have ∆AIC <2 (caps our

capacity to distinguish models).

A ∆AIC of 2 with a differences of 1

parameter corresponds to a p-value of

∼0.047, meaning the complexity is a

significant improvement.

(Murtaugh, 2014)
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∆AIC of 2

Now we we have a better idea of why ∆AIC <2 is pervasive in the

literature.

But are we any closer to knowing what to do when we have a number of

top contenders (i.e., ∆AIC <2 )?
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AIC Overfitting



AIC Overfitting

Before we decide what to do when multiple models are reasonable

contenders we need to explore how AIC model selection performs in

practice.

It’s well known in the statistics literature that AIC has a tendency to

overfit, but what does that look like?
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Simulation Study

Strong Effects Tapered Effects

Randomly used 5 of them, and added 5 other ‘noise’ parameters.

Fit models, selected the best by AIC and AICc, compared which

parameters were selected based on the true system, repeated this 1000s

of times
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Strong Effects Results
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Tapered Effects Results
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AIC/AICc performance

For systems with strong effect sizes, both AIC and

AICc identified true parameters well for high n.

For systems with tapered effect sizes, neither AIC

nor AICc identified all of the true parameters well

even with n was extremely high.

When n was small, AIC missed fewer true

parameters than AICc, but at the cost of more

false positives.

For both systems AIC and AICc consistently

identified noise parameters as being important.

Strong Effects

Tapered Effects
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AIC/AICc performance

In practice, AIC/AICc tend to overfit (pick too many parameters), but

when effect sizes are small they can also miss key parameters.

When ∆AIC/AICc values are small our ability to distinguish between

models gets murky.

This leaves us with a number of different options:

1. Be cautious and pick the most parsimonious model.

2. Be liberal and include all contending parameters in the final model.

3. Conduct likelihood-ratio tests on the top models.

4. Perform model averaging.
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Model Averaging



Model averaging

Model averaging refers to the practice of using

several models at once for making predictions or

inferring parameters.

The Idea: If a model is misspecified, the

parameters estimates may be too high/low (e.g.,

noise parameters soaking up effects or some effects

getting inflated to make up for missing

parameters).

Averaging parameter values from different models,

with biases in either way, should cancel out and

reduce bias in the average.
(Dormann et al., 2018)
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Model averaging cont.

Variance between models is also important!

(Dormann et al., 2018)

If all models make identical, and wrong predictions,

this would cancel any benefit of averaging.

If, however, model predictions are incorrect but

vary evenly around the truth, there are substantial

benefits to averaging.

In other words, you only then I get the full benefits

of model averaging when models have very

different parameter estimates.
(Dormann et al., 2018)
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Model weighting

Challenge: If we throw all models we can possible think of into an

averaging procedure, but only a few are actually reasonable, then the

junk can ruin the averaged model.

One solution you see in many papers is to only average plausible models

(e.g., only models within ∆ AICc of 2).

Another solution is to somehow weight all of the different models based

on their ‘plausibility’.

A third solution is to take a hybrid approach of averaging a reduced pool

of unequally weighted models.

The question is how do we assign model weights?
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Model weights

In ecology, model averaging is dominated by the IC framework

popularised by Burnham & Anderson (2002).

We saw earlier that model likelihoods provide a formal measure of

evidence for each of the models in the set:

`i = e(− ∆AICi
2 )

The ‘probability’ of each model, Mi , given the data and the N possible

models, can be computed as a measure of strength of evidence (Burnham

et al., 2011):

wi = Pr(Mi |data) = `i∑N
i=1 `i

where
∑N

i=1 `i = 1
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Model averaging in R

library(nlme)

library(MuMIn)

data <- read.csv("Ant_Richness.csv")

FIT <- gls(num_sp ~ latitude + elevation , data = data , method = "ML", na.action = na.fail)

FITS <- dredge(FIT)

FITS

Global model call: gls(model = num_sp ~ latitude + elevation , data = data , method = "ML",

na.action = na.fail)

---

Model selection table

(Intrc) elvtn lattd df logLik AICc delta weight

4 11.120 -0.001373 -0.2018 4 -4.059 18.5 0.00 0.922

2 2.489 -0.001613 3 -8.672 24.7 6.21 0.041

3 12.390 -0.2388 3 -8.857 25.0 6.58 0.034

1 2.114 2 -13.224 31.1 12.61 0.002

Models ranked by AICc(x)
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Model averaging in R cont.

AVG.FIT <- model.avg(FITS)

summary(AVG.FIT)

Component models:

df logLik AICc delta weight

12 4 -4.06 18.47 0.00 0.92

1 3 -8.67 24.68 6.21 0.04

2 3 -8.86 25.05 6.58 0.03

(Null) 2 -13.22 31.08 12.61 0.00

Term codes:

elevation latitude

1 2

Model -averaged coefficients:

(full average)

Estimate Std. Error Adjusted SE z value Pr(>|z|)

(Intercept) 10.7869966 3.2388986 3.3934619 3.179 0.00148 **

elevation -0.0013333 0.0004967 0.0005211 2.558 0.01051 *

latitude -0.1943997 0.0758035 0.0794094 2.448 0.01436 *

(conditional average)

Estimate Std. Error Adjusted SE z value Pr(>|z|)

(Intercept) 10.7869966 3.2388986 3.3934619 3.179 0.00148 **

elevation -0.0013832 0.0004323 0.0004612 2.999 0.00271 **

latitude -0.2031600 0.0650028 0.0693561 2.929 0.00340 **
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Benefits of model averaging

IC based model averaging via MuMIn is one of the many ways you can

cary out model averaging, but is any one method better than any other?

Also is model averaging better than just picking a model?

(Dormann et al., 2018)

“We found little in our results to justify the dominance of AIC-based

model averaging. And model-averaging did not necessarily outperform

single models.”
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Model averaging take-home

Model averaging has no super-powers. Like most other statistical

methods, model averaging has benefits and costs, and you must weight

them to decide which approach is best for your problem.

Benefits include a possible reduction of predictive error and improved

parameter estimates.

Costs include extra work/computation time, the fact that it does not

always work, and that confidence intervals and p-values are difficult to

provide.
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Model Selection and Averaging

Recap



Model selection and averaging

Our goal when building models is to identify the fit that optimally

balances over- and under-fitting.

In practice, there is no perfect solution for doing this and how you

proceed is part science part art.

Know your data, keep your research question in mind, proceed cautiously,

check model assumptions, and always check model quality/performance.
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Pragmatic workflow
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