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Autocorrelation and the IID

Assumption



The IID Assumption

Last lecture we saw how differences in variances across

groups (i.e., heteroskedasticity) can break the

‘identical’ part of the IID assumption.

We also saw how adding a variance structure to the

model can correct for heteroskedasticity.

Over the next few lectures we’ll explore ways in which

the ‘independent’ part of the IID assumption can be

broken, what the implications of this mean, and how

to correct for it.
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Autocorrelation is important

© Chris Sorensen

Dr. Sam Wang, Neuroscientist

—Princeton Election Consortium

“It is totally over. If Trump wins

more than 240 electoral votes, I will

eat a bug.”

© ABC News

Nate Silver, Statistician

—FiveThirtyEight.com

“Trump Is Just A Normal Polling

Error Behind Clinton.”
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Ignoring non-ind. → overconfidence

Are these polling errors

independently distributed?

This same statistical issue that

caused overly confident

predictions of Clinton’s 2016

victory can result in

overconfidence in parameter

estimates and predictions in

regression models.
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Autocorrelation impact

Sample size, n is the denominator when calculating both SEs and CIs.

SE = σ√
n

95%CI = x̄ ± 1.96 σ√
n

All else equal: ↑ n =↓ SE & ↓ CI

But with autocorrelated data each new datapoint is related to a

previously collected datapoint and does not bring a full independent

datapoint worth of information (e.g., 90% autocorr. ≈ 10% new info).

When data are autocorrelated neffective < n, meaning SEs and CIs shrink

faster than they should, resulting in a false sense of confidence.

Effect is usually strongest on SEs and CIs, but autocorrelation can also

impact the mean: x̄ =
1

n

(
n∑

i=1

xi

)
=

x1 + · · ·+ xn
n
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Sources of autocorrelation

Anything that causes some data points to be more similar to each other

than others can result in autocorrelation.

Over the next three lectures we will be covering the three most common

sources of autocorrelation in biological data:

• Time: Data that are close together in

time are more related.

• Space: Data that are close together in

space are more related.

• Phylogeny: Species that are closer

together on an evolutionary timescale

are more related.
(Liang et al., 2019)Biol 520C: Statistical modelling for biological data 11



Temporal Autocorrelation



Temporal Autocorrelation

As biologists, we often find ourselves measuring things over time (e.g.,

population sizes, animal locations, CO2 levels, reaction times, etc.).

When this is the case, autocorrelation can arise in two ways:

1. The autocorrelation timescale of the process we’re measuring.
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Temporal Autocorrelation

As biologists, we often find ourselves measuring things over time (e.g.,

population sizes, animal locations, CO2 levels, reaction times, etc.).

When this is the case, autocorrelation can arise in two ways:

2. The rate/duration at which we’re collecting data.
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Identifying Autocorrelation

Autocorrelation can be difficult to

see in a simple residuals vs. fitted

plot (not designed for this purpose).

Instead we typically plot

autocorrelation functions (ACFs)
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Autocorrelation Function

Residt Residt + 0

1 1

2 2

3 3

4 4

5 5

. . . . . .

i i

vart = 1
n

∑
(residt × residt)

vart+0 = 1
n

∑
(residt × residt+0)

ACF0 = vart+0/vart
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Autocorrelation Function

Residt Residt + 1

1 2

2 3

3 4

4 5

5 6

. . . . . .

i - 1 i

vart = 1
n

∑
(residt × residt)

vart+1 = 1
n

∑
(residt × residt+1)

ACF1 = vart+1/vart
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Autocorrelation Function

Residt Residt + 2

1 3

2 4

3 5

4 6

5 7
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i - 2 i

vart = 1
n

∑
(residt × residt)

vart+2 = 1
n
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Autocorrelation Function

Residt Residt + 3

1 4

2 5

3 6

4 7

5 8

. . . . . .

i - 3 i

vart = 1
n

∑
(residt × residt)

vart+3 = 1
n

∑
(residt × residt+3)

ACF3 = vart+3/vart
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Autocorrelation Function

Residt Residt + i − 1

1 i

vart = 1
n

∑
(residt × residt)

vart+i−1 = 1
n

∑
(residt × residt+i−1)

ACFi-1 = vart+i−1/vart Continue until you’ve run through the whole

dataset.
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Autocorrelation Function cont.

Schematically, calculating the ACF looks like this:

Source: Notes on statistics and probability

What happens to the sample size as the lag increases?
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Visualising the ACF

ACF is typically used as a visual

diagnostic tool.

Ranges from 1 to -1 and

autocorrelation at lag 0 = 1.

Usually accompanied by dashed lines

telling you where significance lies

(95% CIs).

You can do this in R via the acf()

function.
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Correcting Temporal

Autocorrelation



Correcting Temporal Autocorrelation

So you find yourself with temporally autocorrelated data. What next?
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Correcting Temporal Autocorrelation

‘Dealing with temporal autocorrelation’ and ‘analysing temporal trends’

are not the same thing.

This lecture focuses only on tools for dealing with the lack of

independence associated with temporal data.

If you’re interested in analysing temporal trends you need to apply time

series analysis, which we will not cover this in this course.
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Temp. Autocorrelation and regression

The models we’ve been working with so far:

yi = β0 + β1 × xi + εi εi ∼ N (0, V ) V = σ2


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


The diagonal defines the variances. All 1s indicates homogeneity of

variances.

The off-diagonals define the co-variances. The 0s indicate independence.

Multiplying this out would give you

an n × 1 matrix equal to σ2.
V =


σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σ2

 =


σ2

σ2

...

σ2
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Variance-Covariance Matrix

Correcting for autocorrelation ‘simply’

involves identifying the autocorrelation

structure of the residuals and modifying the

variance-covariance matrix.

V = σ2


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



When the residuals are autocorrelated, the

off-diagonals 6= 0.

V = σ2


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1


︸ ︷︷ ︸

correlation matrix
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Compound Symmetric Error Structure

The simplest case is when all the covariances are constant, non-zero

value. This is referred to as ‘compound symmetry’.

The degree of correlation

between residuals (ρ) is equal to

ρ = θ
θ+σ2 .

V =


θ + σ2 θ · · · θ

θ θ + σ2 · · · θ
...

...
. . .

...

θ θ · · · θ + σ2


︸ ︷︷ ︸

variance−covariance matrix

Often too simplistic for real autocorrelation structures, but can

sometimes be useful.
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AR-1 Error Structure

The first order auto-regressive (AR1) structure defines a correlation

structure in which the degree of correlation between two observations is

proportional to the relative amount of elapsed time.

The degree of correlation

between a pair of residuals is

defined as ρ|t−s|

|t − s| is the absolute difference

between the current time (t) and

the previous time (s).

V = σ2



1 ρ ρ2 · · · ρi

ρ 1 ρ
. . .

...

ρ2 ρ 1
. . . ρ2

...
. . .

. . .
. . . ρ

ρi · · · ρ2 ρ 1


︸ ︷︷ ︸

correlation matrix

E.g., If ρ = 0.5 and two residuals are separated by two units of time, the

correlation is 0.52 = 0.25.

AR-1 correlation is a useful correlation structure for ecological data.
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ARMA Error Structure

The auto-regressive moving-average (ARMA) model is a general model

with two parameters:

1. p: The number of autoregressive parameters.

2. q: The number of moving average parameters.

ARMA models are very flexible, but can be challenging to work with.

They can also be very slow to fit on large datasets.
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Correcting Temporal

Autocorrelation in R



The Hawaiian bird data

We’re going to work with a dataset from Reed

et al. (2007) to examine the abundance of

moorhen (Gallinula galeata) on the Hawaiian

Island Kauai.

The data are comprised of bird counts over

years as well as annual rainfall.

Today’s starting point is the linear regression model:

√
Birdsi = β0 + β1Rainfalli + β2Yeari + εi

Note: The √ transformation was to clean up heteroskedasticity. We could have used the methods we learned last lecture, but we’ll keep

it simple today.
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Autocorr. in the Hawaiian bird data

library(nlme)

data <- read.csv("Hawaii.csv")

data$Birds <- sqrt(data$Moorhen.Kauai)

FIT <- gls(Birds ~ Rainfall + Year , na.action = na.omit ,

data = data)

Generalized least squares fit by REML

Model: Birds ~ Rainfall + Year

Data: data

AIC BIC logLik

228.4798 235.4305 -110.2399

Coefficients:

Value Std.Error t-value p-value

(Intercept) -477.6634 56.41907 -8.466346 0.0000

Rainfall 0.0009 0.04989 0.017245 0.9863

Year 0.2450 0.02847 8.604858 0.0000

Residual standard error: 2.608391

Degrees of freedom: 45 total; 42 residual

acf(residuals(FIT , type = "

normalized"))

These data are clearly autocorrelated and the results can’t be trusted.
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Bird data var-cov matrix

Our model is:
√
Birdsi = βIntercept + β1 ×Rainfalli + β2 ×Yeari + εi εi ∼ N (0, V )

To account for the year over year autocorrelation in moorhen counts we

can modify the covariances of variance-covariance matrix

V =



var1958 cov1958,1959 · · · · · · cov1958,2003

cov1959,1958 var1959 · · ·
. . .

...

cov1960,1958 cov1960,1959 var1960
. . .

...
...

...
...

. . .
...

cov2003,1958 · · · · · · cov2003,2002 var2003
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Compound Symmetric Errors in R

Applying autocorrelated structures to the residuals can be done using the

correlation option in the gls() function.

Compound symmetric errors can be applied via the

corCompSymm() function.

FIT_CompSymm <- gls(Birds ~ Rainfall + Year ,

na.action = na.omit ,

correlation = corCompSymm(form = ~ Year),

data = data)

summary(FIT_CompSymm)

...

Correlation Structure: Compound symmetry

Formula: ~Year

Parameter estimate(s):

Rho

3.392348e-18

...

AIC(FIT , FIT_CompSymm)

df AIC

FIT 4 228.4798

FIT_CompSymm 5 230.4798

acf(residuals(FIT_CompSymm ,

type = "normalized"))

AIC shows we made the fit worse, and the residuals are still autocorr. :(
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AR-1 Errors in R

AR-1 errors can be applied via the corAR1()

function.

FIT_AR1 <- gls(Birds ~ Rainfall + Year ,

na.action = na.omit ,

correlation = corAR1(form = ~ Year),

data = data)

summary(FIT_AR1)

...

Correlation Structure: ARMA (1,0)

Formula: ~Year

Parameter estimate(s):

Phi1

0.7734303

...

AIC(FIT , FIT_CompSymm , FIT_AR1)

df AIC

FIT 4 228.4798

FIT_CompSymm 5 230.4798

FIT_AR1 5 199.1394

acf(residuals(FIT_AR1 , type

= "normalized"))

AIC shows an improvement and the residuals are no longer autocorr.
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ARMA Errors in R

ARMA errors can be applied via the corARMA()

function.

FIT_ARMA1 <- gls(Birds ~ Rainfall + Year ,

na.action = na.omit ,

correlation = corARMA(form = ~ Year ,

p = 2),

data = data)

summary(FIT_ARMA1)

...

Correlation Structure: ARMA (2,0)

Formula: ~Year

Parameter estimate(s):

Phi1 Phi2

0.9668205 -0.3220174

...

AIC(FIT , FIT_CompSymm , FIT_AR1 , FIT_ARMA1)

df AIC

FIT 4 228.4798

FIT_CompSymm 5 230.4798

FIT_AR1 5 199.1394

FIT_ARMA1 6 196.8777

acf(residuals(FIT_ARMA1 ,

type = "normalized"))

AIC shows a marginal improvement and the residuals are ok.
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ARMA Errors in R cont.

We could also try adding a moving average term

via q.

FIT_ARMA2 <- gls(Birds ~ Rainfall + Year ,

na.action = na.omit ,

correlation = corARMA(c(0.3, -0.3, 0.3),

form = ~ Year ,

p = 2,

q = 1),

data = data)

summary(FIT_ARMA2)

...

Correlation Structure: ARMA (2,1)

Formula: ~Year

Parameter estimate(s):

Phi1 Phi2 Theta1

0.89422729 -0.26715887 0.08293474

...

AIC(FIT , FIT_CompSymm , FIT_AR1 ,

FIT_ARMA1 , FIT_ARMA2)

df AIC

FIT 4 228.4798

FIT_CompSymm 5 230.4798

FIT_AR1 5 199.1394

FIT_ARMA1 6 196.8777

FIT_ARMA2 7 198.8578

acf(residuals(FIT_ARMA2 ,

type = "normalized"))

AIC is slightly worse, but the residuals are ok.
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Corrected model

Original Model

Generalized least squares fit by REML

Model: Birds ~ Rainfall + Year

Data: data

AIC BIC logLik

228.4798 235.4305 -110.2399

Coefficients:

Value Std.Error t-value p-value

(Intercept) -477.6634 56.41907 -8.466346 0.0000

Rainfall 0.0009 0.04989 0.017245 0.9863

Year 0.2450 0.02847 8.604858 0.0000

Correlation:

(Intr) Ranfll

Rainfall -0.036

Year -1.000 0.020

Residual standard error: 2.608391

Degrees of freedom: 45 total; 42 residual

ARMA(2,0) Model

Generalized least squares fit by REML

Model: Birds ~ Rainfall + Year

Data: data

AIC BIC logLik

196.8777 207.3037 -92.43886

Coefficients:

Value Std.Error t-value p-value

(Intercept) -471.8304 94.30829 -5.003064 0.0000

Rainfall -0.0170 0.02771 -0.614301 0.5423

Year 0.2422 0.04764 5.083189 0.0000

Correlation:

(Intr) Ranfll

Rainfall 0.001

Year -1.000 -0.006

Residual standard error: 2.657647

Degrees of freedom: 45 total; 42 residual

Correlation Structure: ARMA (2,0)

Formula: ~Year

Parameter estimate(s):

Phi1 Phi2

0.9668205 -0.3220174
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Overview of Variance Structures

We covered several ways to model temporally autocorrelated data:

Type Covariance ρ DF R Function

IID 0 0 corSymm()

Compound Symetric ρ = θ
θ+σ2 1 corCompSymm()

AR-1 ρ|t−s| 1 corAR1()

ARMA variable variable corARMA()

For the bird data, going from IID to AR-1 offered a big improvement, and then

fine-tuning via more complicated ARMA structures resulted in only marginal

improvements over AR-1. This is common in practice.

Unless there are serious issues remaining in your residuals, the pragmatic

solution is to stop when you have a reasonably appropriate model.
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