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Review



The IID Assumption

Last lecture we saw how collecting data over time can result in

temporally autocorrelated data, breaking the IID assumption.

We also saw how modifying the off-diagonals of the correlation matrix

can correct for temporal autocorrelation.

V = σ2


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1


︸ ︷︷ ︸

correlation matrix

Finally, we learned a few ways to do this in R using functions from the

nlme package.
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Impact of autocorrelation

We touched on how, with autocorrelated data, each new datapoint does

not bring a full independent datapoint worth of information.

When data are autocorrelated neffective < n, meaning SEs and CIs shrink

faster than they should.

SE = σ√
n

95%CI = x̄ ± 1.96 σ√
n

This results in over-confidence in our estimates.

Effect is usually strongest on SEs and CIs, but autocorrelation can also

impact the accuracy of parameter estimates.
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Sources of autocorrelation

We also covered the idea that anything that causes some data points to

be more similar to each other than others can result in autocorrelation.

This included: x

• Time: Data that are close together in

time are more related.

• Space: Data that are close together in

space are more related.

• Phylogeny: Species that are closer

together on an evolutionary timescale

are more related.
(Liang et al., 2019)
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Spatial Autocorrelation



Spatial Autocorrelation

Biological data are often collected by measuring quantities over space

(e.g., abundances, growth rates, species occurrences, etc.).

When this is the case, spatial autocorrelation can arise when the variation

between the values of the datapoints is affected by their spatial distance.

The underlying reason for this is that many of the drivers of biological

patterns such as environmental conditions, topography, ecosystem

structure/composition act at large spatial scales, making data that are

spatially close more similar than data collected further apart.
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Spatial Autocorrelation cont.

What if we’re studying the effect of rainfall on spp. div. in the Amazon?

Source: Tadashi Fukami and Jes Coyle

Because rainfall is correlated in space, species diversity will also be

correlated in space (if the relationship exists).
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Detecting Spatial

Autocorrelation



Bubble plots

As with temporal autocorrelation, spatial

autocorrelation can be difficult to see in a

simple residuals vs. fitted plot (again, not

designed for this purpose).

‘Bubble plots’ are an easy tool to quickly

assess the residuals for autocorrelation.

Residuals are plotted in space, and

sizes/colours are proportional to their

values.

Idea is to look for patterns (absence of a

pattern is good).

Bubble plots are quick and easy tools, but

can be hard to read and not very formal.
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Moran’s I

Moran’s I is a correlation coefficient that measures the overall spatial

autocorrelation of a data set (think of it as ∼ weighted covariance):

I = N
W

∑
i

∑
j wij (xi−x̄)(xj−x̄)∑

i (xi−x̄)2

N is the number of spatial units indexed by i and j ;

x is the variable of interest and x̄ is the mean of x ;

wij is a matrix of spatial weights and W is the sum of all wij .

Values of I usually range from -1 to +1.
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Moran’s I in R

Many R packages for calculating Moran’s I

library(ape)

library(fields)

#Vector of spatial coordinates

coords = cbind(data$x, data$y)

#Matrix of distances for the weights

w = fields :: rdist(coords)

#Calculate Moran ’s I

ape::Moran.I(data$Bor , w = w)

$observed
[1] -0.03019649

$expected
[1] -0.001879699

$sd
[1] 0.001368412

$p.value
[1] 3.991055e-95

The p-value tells us we have significant spatial autocorrelation
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Moran’s I cont.

Moran’s I can be a useful tool for identifying the presence of

autocorrelation and is quite popular.

The challenge is how to act on this information (i.e., lets you know if you

have a problem, but doesn’t help in finding a solution)?

Also very sensitive to how you define the weights:

“The idea is to construct a matrix that accurately reflects your assumptions

about the particular spatial phenomenon in question. A common approach is to

give a weight of 1 if two zones are neighbors, and 0 otherwise, though the

definition of ‘neighbors’ can vary. Another common approach might be to give

a weight of 1 to k nearest neighbors, 0 otherwise. An alternative is to use a

distance decay function for assigning weights. Sometimes the length of a

shared edge is used for assigning different weights to neighbors. The selection

of spatial weights matrix should be guided by theory about the phenomenon in

question.” – Wikipedia
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Semi-variograms

Semi-variograms (or just variograms) are spatial data’s equivalent of the

ACF facilitate visual assessment of spatial autocorrelations in the data.

Semi-variance is a measure of the degree of similarity between pairs of

points separated by a specific distance h. Plot of semi-variance vs.

separation distance is called a variogram.

For residuals separated by distance h:

γ̂(s) =
1

2N(h)

N(h)∑
i=1

[z(xi + h) − z(xi )]2
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Reading a variogram
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Variograms and correlation models

Last lecture we saw how different autocorrelation models could be used

to correct for different temporal autocorrelation structures.

The same applies with spatial autocorrelation.

Usefully, the different spatial correlation models all have differently

shaped theoretical variograms.

In other words the shape of a dataset’s empirical variogram can provide

clues on which spatial correlation model is most appropriate.
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Correlation models and their variograms

Exponential Φ = 1 − e
− D
ρ

Spherical Φ = 1(1 − 1.5( d
ρ

) + 0.5( d
ρ

)3)I (d < ρ)

Gaussian Φ = 1 − e
−( D
ρ

)2

Linear Φ = 1 − (1 D
ρ

)I (d < ρ)
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Correcting Spatial

Autocorrelation



Correcting Spatial Autocorrelation

So you find yourself with spatially autocorrelated data. What next?
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Correcting Spatial Autocorrelation

Here again, ‘Dealing with spatial autocorrelation’ and ‘analysing spatial

trends’ are not the same thing. Our focus is on the former.

Methods for handling spatial autocorrelation in a regressional framework

come primarily from the field of geostatistics.

In practice, they function much like

corrections for temporal autocorrelation

(i.e., a modification of the model’s

variance-covariance matrix).

V =


σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σ2
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The Russian Boreal Data

We’re going to work with a dataset from Zuur

et al. (2007) to examine the influence of

biogeography on forest composition in

Tatarstan, Russia.

The response variable is a measure of boreality

(i.e., percent boreal species at a site) and our

explanatory variable is a measure of wetness.

Today’s starting point is the linear regression

model:

Borealityi = β0 + β1Wetnessi + εi
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Autocorr. in the Russian Boreality data

library(nlme)

data <- read.csv("Boreality.csv")

data$Bor <- sqrt (1000 * (data$nBor + 1)/(data$nTot))
data$Wet <- data$Wet - mean(data$Wet)

FIT <- gls(Bor ~ Wet , data = data)

Generalized least squares fit by REML

Model: Bor ~ Wet

Data: data

AIC BIC logLik

2844.541 2857.365 -1419.271

Coefficients:

Value Std.Error t-value p-value

(Intercept) 18.4880 0.378719 48.81715 0

Wet 165.8036 10.599111 15.64316 0

Correlation:

(Intr)

Wet 0.917

Residual standard error: 3.490577

Degrees of freedom: 533 total; 531 residual

Residuals actually look ok.
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Autocorr. in the Russian Boreality data

library(ape)

library(fields)

library(gstat)

library(sp)

#Spatial data frame of residuals

RES <- data.frame(res = residuals(FIT ,

type="normalized"),

x = data$x,
y = data$y)

coordinates(RES) <- c("x","y")

#Matrix of distances

w = fields :: rdist(cbind(data$x, data$y))

#Calculate Moran ’s I

ape::Moran.I(RES$res , w = w)

$observed
[1] -0.01024323

$expected
[1] -0.001879699

$sd
[1] 0.001367237

$p.value
[1] 9.52903e-10

#Calculate variogram

vg <- variogram(res ~ 1, data = RES)

Variogram shows initial

curvature.

These data are clearly

autocorrelated and the results

can’t be trusted.
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Linear spatial correlation in R

A linear spatial correlation structure can be

applied via the corLin() function.

FIT_lin <- gls(Bor ~ Wet ,

correlation = corLin(c(800, 0.75) ,

form=~x+y,

nugget = TRUE),

data = data)

Linear Φ = 1 − (1 D
ρ

)I (d < ρ)

summary(FIT_lin)

...

Correlation Structure: Linear spatial correlation

Formula: ~x + y

Parameter estimate(s):

range nugget

758.8801793 0.5601258

...

AIC(FIT , FIT_lin)

df AIC

FIT 3 2844.541

FIT_lin 5 2735.603

Moran.I(RES$res , w = w)

...

$p.value
[1] 0.6787855
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Spherical spatial correlation in R

A spherical spatial correlation structure can

be applied via the corSpher() function.

FIT_Sph <- gls(Bor ~ Wet ,

correlation = corSpher(c(800, 0.75),

form=~x+y,

nugget = TRUE),

data = data)

Spherical Φ = 1(1 − 1.5( d
ρ

) + 0.5( d
ρ

)3)I (d < ρ)

summary(FIT_Sph)

...

Correlation Structure: Spherical spatial correlation

Formula: ~x + y

Parameter estimate(s):

range nugget

939.3200338 0.5211218

...

AIC(FIT , FIT_Sph)

df AIC

FIT 3 2844.541

FIT_Sph 5 2732.666

Moran.I(RES$res , w = w)

...

$p.value
[1] 0.6511908

Biol 520C: Statistical modelling for biological data 30



Gaussian spatial correlation in R

A Gaussian spatial correlation structure can

be applied via the corGaus() function.

FIT_Gau <- gls(Bor ~ Wet ,

correlation = corGaus(c(800, 0.75) ,

form=~x+y,

nugget = TRUE),

data = data)

Gaussian Φ = 1 − e
−( D
ρ

)2

summary(FIT_Gau)

...

Correlation Structure: Gaussian spatial correlation

Formula: ~x + y

Parameter estimate(s):

range nugget

460.3947751 0.6112509

...

AIC(FIT , FIT_Gau)

df AIC

FIT 3 2844.541

FIT_Gau 5 2736.292

Moran.I(RES$res , w = w)

...

$p.value
[1] 0.6275071
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Exponential spatial correlation in R

An exponential spatial correlation structure

can be applied via the corExp() function.

FIT_Exp <- gls(Bor ~ Wet ,

correlation = corExp(c(800, 0.75) ,

form=~x+y,

nugget = TRUE),

data = data)

Exponential Φ = 1 − e
− D
ρ

summary(FIT_Exp)

...

Correlation Structure: Exponential spatial correlation

Formula: ~x + y

Parameter estimate(s):

range nugget

481.1743349 0.4849357

...

AIC(FIT , FIT_Exp)

df AIC

FIT 3 2844.541

FIT_Exp 5 2732.224

Moran.I(RES$res , w = w)

...

$p.value
[1] 0.6519741
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Rational quad. spatial correlation

A rational quadratic spatial correlation

structure can be applied via the

corRatio() function.

FIT_Rat <- gls(Bor ~ Wet ,

correlation = corRatio(c(800, 0.75),

form=~x+y,

nugget = TRUE),

data = data)

Rational quadratic Φ = 1
1+(

ρ
d

)2

summary(FIT_Rat)

...

Correlation Structure: Rational quadratic spatial

correlation

Formula: ~x + y

Parameter estimate(s):

range nugget

373.0351282 0.5627731

...

AIC(FIT , FIT_Rat)

df AIC

FIT 3 2844.541

FIT_Rat 5 2732.930

Moran.I(RES$res , w = w)

...

$p.value
[1] 0.6508174
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Selecting the best Structure

We just fit 6 different models, but

how do we know which correlation

structure to go with?

#Calculate AIC values

TABLE <- AIC(FIT , FIT_lin , FIT_Exp ,

FIT_Rat , FIT_Sph , FIT_Gau)

#Ordered by lowest to highest AIC

TABLE <- TABLE[order(TABLE$AIC),]

#Calculate Delta AICs

TABLE$DeltaAIC <- TABLE$AIC - TABLE$AIC [1]

#Evidence compared to AIC best model

TABLE$Evidence <- 1/exp(-TABLE$DeltaAIC /2)

TABLE

df AIC DeltaAIC Evidence

FIT_Exp 5 2732.224 0.0000000 1.000000e+00

FIT_Sph 5 2732.666 0.4423134 1.247519e+00

FIT_Rat 5 2732.930 0.7063538 1.423583e+00

FIT_lin 5 2735.603 3.3797773 5.418877e+00

FIT_Gau 5 2736.292 4.0685720 7.646790e+00

FIT 3 2844.541 112.3174833 2.451498e+24

#Calculate empirical variogram

vg <- Variogram(FIT , form = ~ x + y,

robust = TRUE ,

maxDist = 2500)

#Generate the fitted exp vgm

D <- data.frame(D = seq(0,2500, 1))

EXP_FIT <- corExp(c(481.1743349 ,

0.4849357) ,

form = ~D,

nugget = TRUE)

EXP_FIT2 <- Initialize(EXP_FIT ,data=D)

selected_mod <- Variogram(EXP_FIT2)
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Corrected model

Original Model

Generalized least squares fit by REML

Model: Bor ~ Wet

Data: data

AIC BIC logLik

2844.541 2857.365 -1419.271

Coefficients:

Value Std.Error t-value p-value

(Intercept) 13.05622 0.151194 86.35430 0

Wet 165.80355 10.599111 15.64316 0

Correlation:

(Intr)

Wet 0

Residual standard error: 3.490577

Degrees of freedom: 533 total; 531 residual

Exponential spatial correlation model

Generalized least squares fit by REML

Model: Bor ~ Wet

Data: data

AIC BIC logLik

2732.224 2753.597 -1361.112

Coefficients:

Value Std.Error t-value p-value

(Intercept) 12.55226 0.678111 18.510619 0

Wet 75.43166 13.541700 5.570325 0

Correlation:

(Intr)

Wet 0.041

Residual standard error: 3.707339

Degrees of freedom: 533 total; 531 residual

Correlation Structure: Exponential spatial

correlation

Formula: ~x + y

Parameter estimate(s):

range nugget

481.1743349 0.4849357
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Overview of Correlation Structures

We covered several ways to model spatially autocorrelated data:

Type Description R Function

IID 0 —

Linear Φ = 1 − (1D
ρ

)I (d < ρ) corLin()

Spherical Φ = 1(1 − 1.5( d
ρ

) + 0.5( d
ρ

)3)I (d < ρ) corSpher()

Gaussian Φ = 1 − e−( D
ρ

)2

corGaus()

Exponential Φ = 1 − e−
D
ρ corExp()

Rational quadratic Φ = 1
1+( ρ

d
)2 corRatio()

The model structures can be difficult to interpret, but their variograms have

very recognizable features. Familiarising yourself with them will help you

quickly narrow down what structure to use.
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Technical considerations

Fitting models with complex

correlation structures can be quite

slow at times.

system.time(gls(Bor ~ Wet , data = data))

user system elapsed

0.001 0.000 0.001

CORR <- corSpher(c(800, 0.75),

form=~x+y,

nugget = TRUE)

system.time(gls(Bor ~ Wet ,

correlation = CORR ,

data = data))

user system elapsed

9.781 0.109 9.893

Took nearly 10,000 times longer!

Can also run into numerical issues

without good starting values.

FIT <- gls(Bor ~ Wet ,

correlation = corLin(form=~x+y,

nugget=TRUE),

data = data)

Error in gls(Bor ~ Wet , correlation = corLin(

form = ~x + y, nugget=TRUE), :

false convergence (8)

If that happens you need to provide

better starting guesstimates or

modify the optimiser. Neither of

which are particularly enjoyable.
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Spatially Autocorrelated Data

Experimental designs that do not consider

spatial autocorrelation risk being

subsampled.

A spatial autocorrelated data point will add

little independent information, but inflate n

(Dormann et al., 2007).

Source: Tadashi Fukami and Jes Coyle

Corrections exist to deal with issues of statistical bias, but they can’t

inject more information into a dataset when none exists.

Good study design should consider spatial autocorrelation a priori.

If you had to collect more data for the boreality study how far apart

would you sample? > 500m
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