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The IID Assumption SPeTTEE

Over the course of the last lecture two we saw how collecting data over
time and space can result in autocorrelated data, breaking the 1D
assumption.

We also saw how modifying the off-diagonals of the correlation matrix
can correct for autocorrelation.

Ecologists often find themselves collecting data repeatedly over space and
time, but we're not the only field doing this.

Most of the methods used to correct for temporal or spatial
autocorrelation come from other scientific fields.

Biol 520C: Statistical modelling for biological data 4



THE UNIVERSITY OF BRITISH COLUMBIA

Time series analysis

Okanagan Campus

Can you think of important data that are collected over time that would
drive statistical developments? Data where the ability to predict the
future might be profitable?
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Source: Yahoo! Finance

The models for correcting for temporal autocorrelation come from time
series analysis and econometrics.
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Geostatistics ST —

Can you think of important data that are collected over space? Data
where the ability to predict where things occur might be profitable?

Source: ArcMap

The models for correcting for spatial autocorrelation come from geostats.
with the goal of mapping mineral deposits from only a few boreholes.

Biol 520C: Statistical modelling for biological data 6


https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm

THE UNIVERSITY OF BRITISH COLUMBIA

Phylogenetic Inertia T

... but as ecologists, we don't only measure things over space or time and
there are other potential sources of autocorrelation.

Darwin (1859) recognised that species do
not start over from scratch after speciation
and that characteristics are built on existing
ones that were inherited from their
ancestors.

These inherited traits will limit the amount
of evolution seen in the new taxa, especially
if only a short amount of time has passed
(evolutionarily speaking).

This phenomenon is referred to as
Phylogenetic inertia.

Biol 520C: Statistical modelling for biological data 7



THE UNIVERSITY OF BRITISH COLUMBIA

Phylogenetic Inertia cont. Okanagan Campus

Clusters of data from closely related species can have disproportionate
effects and pull regressions lines in their direction if not accounted for.

20T —
L ’
15 F

Corillas @

Pani @
10 Smphatanis s @ " ® g
L Pap - =
Vandriis . - Elephas maximus sumatrensis, source:
_osp N ) o § 1 Wikimedia
5 L 4
&
E 0.0 - 1 Do we really have completely new
g bl information?
z L 4
£ 05
Z
P4 L 4
3
1.0 1

°
[—s iy .
-5 S b, ¥

L soguins o ]
20F B
ol
Elephas maximus indicus, source: Pixabay
o5l L
12 1.4 1.6 1.8 20 22
Log BODY LENGTH (cm) We probably have new Loxodonta africana, source: Wikipedia
(Bowling et al., 2020) information

What about now?
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Impact of phylogenetic inertia T

The effects of phylogenetic inertia can be even more extreme if we have
multiple observations per species.

Elephas maximus sumatrensis, source: Wikimedia

N=2

Gorilla gorilla, source: Wikipedia

Elephas maximus indicus, source: Pixabay Loxodonta africana, source: Wikipedia

All the elephant data are likely to be similar because elephant species
diverged from one another more recently than elephants did from gorillas.

The 2 gorilla data points cary useful information for making inter-specific
comparisons, but would get out outweighed in a traditional regression.
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Impact of phylogen. inertia cont. T @

ABCDEFGH

If we feed species data into a traditional,
[ID regression framework, we assuming
evolution looks something like this.

Are we prepared to make that assumption?
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Impact of phylogen. inertia cont.? T @

As an extreme example, we could
have data that looks something like:
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Phylogenetic correlation Okanagan Campus

If we knew we were only sampling from effectively 2 groups, we would
probably not run a regression.

1 2021 40

(Felsenstein, 1985)
(Felsenstein, 1985)

The challenge is that real phylogenies aren’t this simple, and it's difficult
to tailor our sampling around evolutionary histories.
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Phylogenetic correlation Okanagan Campus

Problem:

. species are part of a hierarchically structured phylogeny, and thus
cannot be regarded for statistical purposes as if drawn independently
from the same distribution” — Felsenstein (1985)

With spatially/temporally autocorrelated data, we could rely on advances
in econometrics and geostatistics, but with phylogenetic correlation we
were on our own.

Solution:
“... if the techniques do not exist, then we must invent them.”

— Hilborn & Mangel (1997)
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Detecting phylogenetic autocorrelation T

For time series we had... the ACF.

For spatial data we had... variograms.

For phylogenetic data we have... nothing... yet.
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Detecting phylogenetic autocorr. con Okanagan Campus
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The Comparative M Okanagan Campus

When we're carrying out these types of analyses, we're more interested in
between species comparisons than within species.

Felsenstein’s paper spurred a major ecological sub-discipline to form
around finding a solution to this problem, termed ‘Comparative Methods'.

“The non-independence can be circumvented in principle if adequate
information on the phylogeny is available.” — Felsenstein (1985)

In other words, if we can get information on how species are related, we
can use this information to improve our models.

But how?
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Phylogenetic Trees T

The tree of life has a clear, nested ordering (Spp. in Genus, Genus in

Family, etc.)

Order Family Genus Species

Genus (Subgenus) specific epithet

‘Rana (Pantherana) palustris
Rana (Pantherana) pipiens
Rana (Aquarana) catesbeiana
ana('_ Rana (Aquarana) clamitans
Dda,ann; N Rana sylvatica
Hylarana

Rugosa

Pelophylax

Figure 5.

Source: amphibiaweb.org
One easy solution is to treat these data the same way you would any
other nested data using random effects (and people do this).
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Phylogenetic Random Effects

Okanagan Campus

This treats all species within a genus as
independent.

But species within a genus will have

diverged at different times... and genera

Short-eared dog
Crab-eating fox

within families, and so on...

Darvin's fox
Hoary fox

Maned wolt
Bushdog
Side-striped jackal

In other words, this is only a half measure
that largely ignores modern advances in
phylogenetics.

Unsurprisingly, it's not particularly efficient

Giant panda
Northern elephant seal

(see Grafen, 1989, if you're interested in an

700 Walus

Source: Lindblad-Toh et al. (2005)

in depth exploration of this).
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Correcting Phylogenetic Autocorr. T

Can you think of another solution?

In the 1980s, ecologists realised that if you

use phylogenetic distances to modify the o2 0 --- 0
model’s variance-covariance matrix you can 0 o2 --- 0
get corrections that function much like
those we used for spatial /temporal O 0 0'2
autocorrelation.

This is the basis of what we now call phylogenetic regression and it's

what we're going to focus on for the rest of this lecture.
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Phylogenetic regression Okanagan Campus

Our goal is to get from here, to here

o> 0 0
0 o2 0

= .
0 O o2
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Phylogenetic Correlation Matrix S

First step are the diagonals.

How much of the tree does A
share with A?

O o oo o>
oo ocoo W

C
0
0
0
0
0

moTa®>
O oo ocooy
O oo oo m
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Phylogenetic Correlation Matrix S

0.38 +0.13 + 0.28 + 0.21
=1

moOan >
oo ooox
coocoooWw
o oo oo N
oo ooog
O oo o om
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Phylogenetic Correlation Matrix S

0.38 +0.13 + 0.28 + 0.21
=1

mono >
O O O O+~ >
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Phylogenetic Correlation Matrix S

Repeat for all intra-specific
comparisons.

O o oo~ >
coco o~ oOW

C
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Phylogenetic Correlation Matrix S

Next are the off diagonals.

How much of the tree does A
share with B?

O o oo~ >
coco o~ oOW

C
0
0
1
0
0

moTa®>
O o ooy
— O O o o m
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Phylogenetic Correlation Matrix S

0.38 + 0.13 + 0.28 = 0.79

mono >
O O O O+~ >
O oo~ oW
O o R oo N
or oo og
— O O o o m
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Phylogenetic Correlation Matrix S

A B Cc D E
A 1 7 0 0 O
B [0.79 1 0 0 O
c 0 0 1 0 0 0.38 + 0.13 + 0.28 = 0.79
D 0 0 0 1 O
E 0 0 0 0 1
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Phylogenetic Correlation Matrix S

A B C D E
A 1 T 0 0 O
B 10.79 1 0 0 O
c 0 0 1 0 o0 Repeat for A & C
D 0 0 0 1 0O
E 0 0 0 0 1
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Phylogenetic Correlation Matrix S

A B Cc D E
A 1 7 0 0 O
B [0.79 1 0 0 O
c 0 0 1 0 0 0.38 + 0.13 = 0.51
D 0 0 0 1 O
E 0 0 0 0 1
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Phylogenetic Correlation Matrix

Okanagan Campus

A B C D E
A1l 079 051 0 O
o9 1.0 0 O 0.38 + 0.13 = 0.51
clos1 0 1 0 0
D|lo o 0 1 0
ElLo o o o0 1
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Phylogenetic Correlation Matrix S

9 0

0.79

0.51

0.38
0

.. and so on.
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C
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Phylogenetic Correlation Matrix

Okanagan Campus

A B C D

1 0.79 051 0.38
0.79 1 0.51 0.38
0.51 0.51 1 0.38
0.38 0.38 0.38 1

0 0 0 0

Repeat for all species in the
tree.

moaOa>
— O 0O 0o om
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Phylogenetic Correlation Matrix in R T

We'll use the R package ape

library (ape)

#Create our example tree
txt <- "((((A:0.21,B:0.21):0.28,C:0.49):0.13,D:0.62):0.38,E:1.00);"

tree.examp <- read.tree(text = txt)

vev(tree.examp)

A B C D E
A 1.00 0.79 0.51 0.38 0
B 0.79 1.00 0.51 0.38 0
C 0.51 0.51 1.00 0.38 0
D 0.38 0.38 0.38 1.00 0
E 0.00 0.00 0.00 0.00 1

With a phylogenetic correlation matrix in hand, all that's left to do is
feed this into the model just as we did with temporal or spatial
autocorrelation.
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Primate trait data

Okanagan Campus

We'll work with a dataset of primate
brain sizes and body sizes obtained
from AnthroTree Workshop and i Wf
Duke University. fmw

Varecia variegata variegata

me i kst fulvus
ftz‘prl Scle onedtsi

[

7
iBualta cani
Alouaita pig
Gpidns
orifa ganfa gori

7 "’ﬁ‘?ﬁéﬁg?}%amm

3 fogrwyres

log(Brain Size)
SN

N

log(Body Size)

And a phylogenetic tree derived
from Arnold et al. (2010).

ocis
& ﬁrc%v/ ocus albogulars

Jthocus nigrovindls
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Primate regression Okanagan Campus

We're interested in knowing what the relationship between brain size and
body size is.

library(nlme)
library (ape)
data <- read.csv("brain_body_spec.csv"

FIT <- gls(lg_brain ~ lg_body, data = data,

method = "ML")
n 10
summary (FIT)
1.0
Generalized least squares fit by maximum likelihood
Model: 1lg_brain - lg_body .
Data: data o
AIC BIC logLik L
132.6719 140.035 -63.33597 o .
10
Coefficients: =
Value Std.Error  t-value p-value o e Y f
(Intercept) -1.6860136 0.3310534 -5.092874 0
1g_body 0.7154667 0.0411488 17.387323 0

Fit and residuals look perfectly fine
on the surface.
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Primate phylogeny e @

If you're lucky, you can import
If you're unlucky, there will not be an an existing phylogeny file.
existing phylogeny to work with and you
will have to build it by hand.

tree<-read.tree("primate_tree.phy")
summary (tree)

TREE <- "((Strix_aluco:4.2,Asio_otus:4.2):3.1,Athene_ Phylogenetic tree: tree
noctua:7.3);"
Number of tips: 86
Number of nodes: 84
tree.owls <- read.tree(text = TREE) Branch lengths:
mean: 5.991844
variance: 37.40793

plot (tree.owls, type = "c)

plot (tree, type = "c")
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Phylogenetic Correlation Okanagan Campus

The residuals looked good, but closely related species have similar brain
sizes.

COLS <- viridis::viridis(nrow(data))
plot (tree, type = "c", tip.color=COLS[order(data$lg_brain)l)
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Phylogenetic Corrections Okanagan Campus

Phylogenetic correlation structures can be added via the R package ape.

Just like spatial and temporal autocorrelation, there are a number of
alternatives to chose from:

e corBrownian Brownian motion model (Felsenstein 1985)

e corPagel The cov. matrix defined in Freckelton et al. (2002)

e corMartins The cov. matrix defined in Martins and Hansen (1997)
e corGrafen The cov. matrix defined in Grafen (1989)

e corBlomberg The cov. matrix defined in Blomberg et al. (2003)
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Brownian motion correlation in R
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Okanagan Campus

The Brownian model calculates covariance matrices exactly like we did

earlier.
FIT.bm <- gls(lg_brain ~ 1lg_body,
correlation = corBrownian(phy = tree,
form = “species),
data = data, method = "ML")

summary (FIT.bm)

Generalized least squares fit by maximum likelihood
Model: lg_brain ~ lg_body
Data: data
AIC BIC logLik
55.26968 62.63273 -24.63484

Correlation Structure: corBrownian

Formula: ~species
Parameter estimate(s):

numeric (0)

Coefficients:
Value Std.Error t-value p-value
(Intercept) 1.164443 0.5342900 2.179421 0.0321

lg_body 0.293175 0.0393847 7.443880 0.0000

Biol 520C: Statistical modelling for biological data
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AIC(FIT, FIT.bm)

df AIC
FIT 3 132.67193
FIT.bm 3 55.26968
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Pagel’s \ Correlation Stru

Okanagan Campus

We can also adjust the covariance matrix according to the strength of the
phylogenetic signal in the data. This correlation structure is obtained by
multiplying the off-diagonal elements derived from Brownian motion by .

FIT.pgl <- gls(lg_brain ~ lg_body,

correlation = corPagel(value = 0.5,
phy = tree, 6
form = ~ species), B
data = data, method = "ML") 2
£4
)
E]
summary (FIT.pgl) =2
Generalized least squares fit by maximum likelihood . p 3 "
M 1: 1 b i 1 .
ode g_brain g_body Jog(Body Size)
Data: data
ALC BIC logLik
53.24331 63.0607 -22.62166
AIC(FIT, FIT.bm, FIT.pgl)
Correlation Structure: corPagel as AIC
Formula: ~species FIT 3 132.67193
Parameter estimate(s): FIT.bm 3 55.26968
lambda FIT.pgl 4 53.24331
1.010269
H ~
Coofficionte: The value of A is ~ the extent
Value Std.Error t-value p-value . . .
(Intercept) 1.3252923 0.5471048 2.422374 0.0176 to which species differences are
1g_body 0.2715456 0.0362619 7.488460 0.0000

predicted by phylogeny.
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The Ornstein-Uhlenbeck process S —

Under Brownian motion, the expected difference between species is
proportional to the amount of time since they split from a common
ancestor.

This assumes that species can evolve ever greater differences without any
constraints (i.e., evolution is infinitely diffusive). Think of a flying whale
with sparrow sized wings.

Real evolution does have some bounds, and the OU process constrains
evolutionary change by including an ‘attractor’, a.

Under an OU process, the farther a species trait evolves away from the
attractor, the stronger the tendency for the next step in its evolution to
be toward the attractor rather than away from it.
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The OU correlation Structure I —

The OU cov. structure is def. as ; = ye(=%) (Martins & Hansen 1997)

where t;; is the phylogenetic distance between species / and j and v is a

constant.
FIT.mrt <- gls(lg_brain ~ lg_body,
correlation = corMartins(value = 0,
phy = tree, 0
form = ~ species),
data = data, method = "ML") §6
s
=
summary (FIT.mrt) ‘3 4
a
o0
Generalized least squares fit by maximum likelihood )
Model: lg_brain ~ lg_body .
Data: data 2
AIC BIC logLik 4 6 8 10
60.49565 70.31304 -26.24782 log(Body Size)
Correlation Structure: corMartins
Formula: “species AIC(FIT, FIT.bm, FIT.pgl,
Parameter estimate(s): FIT.mrt)
alpha df AIC
0.001953125 FIT 3 132.67193
FIT.bm 3 55.26968
Coefficients: FIT.pgl 4 53.24331
Value Std.Error t-value p-value FIT.mrt 4 60.49565
(Intercept) 1.1255154 1.4586385 0.771621 0.4425
1g_body 0.2987502 0.0396937 7.526379 0.0000
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Grafen’s Correlation Structure ——

Grafen's correlation structure has an additional parameter, p > 0.

Branch lengths are raised to the power of p which allows the tree to be
stretched (as a correction for uncertainty in branch lengths)

High value of p Low value of p

(Grafen, 1989) (Grafen, 1989)
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Grafen’s Correlation Structure ——

FIT.grfn <- gls(lg_brain ~ 1lg_body,
correlation = corGrafen(value = 0.5,
phy = tree, °

form= ~species), 6
O
data = data, method = "ML") >
4
summary (FIT.grfn) &
g
<2
Generalized least squares fit by maximum likelihood
Model: lg_brain ~ lg_body .
Data: data 4 6 8 10
AIC BIC logLik log(Body Size)
78.96361 88.781 -35.4818
Correlation Structure: corGrafen
Formula: ~species AIC(FIT, FIT.bm, FIT.pgl,
Parameter estimate(s): FIT.mrt, FIT.grfn)
rho af AIC
0.4234677 FIT 3 132.67193
FIT.bm 3 55.26968
Coefficients: FUropdl @ BE.20eHd
Value Std.Error t-value p-value FIT.mrt 4 60.49565
(Intercept) 0.3586923 0.4425732 0.810470 0.42 BT - L I TCESESE
1g_body 0.4385990 0.0457473 9.587422 0.00
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Blomberg et al.’s Correlation Structure S —

This model assumes that continuous traits evolve under a BM model
which rates accelerates (if g < 1) or decelerates (if g > 1) through time.
If g =1, then the model reduces to a Brownian motion model.

FIT.blm <- gls(lg_brain ~ lg_body,

correlation = corBlomberg(value = 0.5, o
phy = tree,
form= ~species), '§6
data = data, method = "ML") @
£4
[
summary (FIT.blm) =1
22
Generalized least squares fit by maximum likelihood
Model: 1lg_brain ~ lg_body 2
Data: data 4 ® S 1
AIC BIC logLik log(Body Size)
56.29417 66.11156 -24.14708
Correlation Structure: corBlomberg AIC(FIT, FIT.bm, FIT.pgl,
Formula: “species FIT.mrt, FIT.grfn, FIT.blm)
Parameter estimate(s): af AIC
g FIT 3 132.67193
2.062626 FIT.bm 3 55.26968
FIT.pgl 4 53.24331
Coefficients: FIT.mrt 4 60.49565
Value Std.Error t-value p-value FIT.grfn 4 78.96361
(Intercept) 1.230993 0.7602091 1.619282 0.1091 FIT.blm 4 56.29417

lg_body 0.280819 0.0385963 7.275809 0.0000
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Corrected model ST —

Original Model Pagel's A correlation model
Generalized least squares fit by maximum likelihood Generalized least squares fit by maximum likelihood
Model: lg_brain ~ lg_body Model: lg_brain ~ lg_body
Data: data Data: data
AIC BIC logLik AIC BIC logLik
132.6719 140.035 -63.33597 53.24331 63.0607 -22.62166
Coefficients: Coefficients:
Value Std.Error t-value p-value Value Std.Error t-value p-value
(Intercept) -1.6860136 0.3310534 -5.092874 0 (Intercept) 1.3252923 0.5471048 2.422374 0.0176
lg_body 0.7154667 0.0411488 17.387323 0 lg_body 0.2715456 0.0362619 7.488460 0.0000
Correlation: Correlation:
(Intr) (Intr)
1g_body -0.986 1g_body -0.496
Residual standard error: 0.5053653 Residual standard error: 0.8674091
Degrees of freedom: 86 total; 84 residual Degrees of freedom: 86 total; 84 residual

Correlation Structure: corPagel

Formula: “species
Parameter estimate(s):
lambda

1.010269
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Technical consi

Okanagan Campus

This type of analysis is really sensitive to missing data. If some species
have NAs for certain traits, but are listed in the tree, the model will fail
(cov matrix isn't calculated correctly).

The workflow we went over today assumes 1 datapoint per species (we

used species means). If you want to include everything in the model, it's
possible, but gets messy.
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