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The Gaussian Assumption



Correcting for tricky data

We started this course with simple linear regression and we saw how:

• increasing the number of parameters can soak up variance and

improve a model’s explanatory power;

• we can use mixed effects models to account for hierarchical data

structures;

• we can modify the variance structure to account for

heteroskedasticity;

• we can modify the correlation matrix to correct for autocorrelation.

• ... but there’s an elephant in the room we’ve been ignoring...
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Linear regression

Let’s say we’re interested in the relationship between age and weight in a

species. A simple linear relationship for this would contain an intercept

(β0) and a parameter linking weight and age (β1):

weighti = β0 + β1agei + εi , εi ∼ N (0, σ2
i )

What this model is saying is that for any agei , weighti will be normally

distributed, with µi = β0 + β1agei

The Gaussian distribution is defined as: 1
σ
√

2π
e−

1
2 ( x−µ

σ )2

so rearranging, we get: 1
σ
√

2π
e
− 1

2

(
weighti−(β0+β1agei )

σ

)2
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Linear regression cont.

weighti = β0 + β1agei + εi , εi ∼ N (0, σ2
i )

1
σ
√

2π
e
− 1

2

(
weighti−(β0+β1agei )

σ

)2

Setting the problem up this way allows us to calculate the probability of

obtaining any specific weight, and what range of weights are possible.

So let’s say σ = 2, β0 = 0, β1 = 1, age = 1, here the probability of a

weight of 1g ∼ 0.20, of 2g ∼ 0.18, of 3g ∼ 0.12, and so on...

What’s the range of the Gaussian distribution? −∞,∞

This means that if we set up our problem this way our model is telling us

that there’s some chance of getting a weight of -1g (∼0.12)
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Linear regression cont.2

When we fit any of the models we’ve been working with so far, we are

assuming our residuals should be normally distributed and that our

response can take any value between −∞,∞

What can you do if this is not a reasonable assumption for your data?

• Nothing. If the residuals are normally distributed and the spread

isn’t bad, this isn’t a terrible assumption (remember, no model is

going to be correct).

• Transform your data. Shoehorning your data to fit the

assumptions of normality can work, but it changes the relationship

between your response and your predictors.

• Choose another distribution.
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Generalised Linear Models

(GLMs)



Generalised Linear Models (GLMs)

“In statistics, the generalized linear model (GLM) is a flexible

generalization of ordinary linear regression that allows for response

variables that have error distribution models other than a normal

distribution.” — Wikipedia

So if our models are of this form:

Yi = β0 + β1Xi + εi , εi ∼ N (0, σ2
i )

it should simply be a matter of swapping out this bit εi ∼ N (0, σ2
i ) right?

The challenge is that not all distributions have a mean and a variance so

you can’t simply interchange them.
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GLMs cont.

In 1972, Nelder & Wedderburn (1972) worked out a generalisation of the

linear regression model. They extended the models we’ve been working

with so far to any member of the family exponential distributions

(Gaussian, Poisson, binomial, negative binomial, gamma, etc.).

They showed how all of these distributions can be expressed by the

general formulation:

f (Y ; θ, φ) = e
y×θ−b(θ)

a(φ) +c(y ,θ)

I.e., if we fix certain pieces of this formulation to different values we can

get back any member of the family exponential distributions.

This means that a single set of equations (and estimators) can be used

for all of these different distributions.
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GLMs cont.2

Now that we have a general expression for the stochastic component of

our model, we just need to find a way to ‘link’ the expectation value of

our model with the expectation value of the distribution.

To do this we need to carry out 3 steps when fitting GLMs:

1. Make a distributional assumption on the response variable Yi . This

also defines the mean and variance of Yi .

2. Specify the deterministic part of the model.

3. Formally specify the ‘link’ between the mean of Yi and the

deterministic part based on your distributional assumption.
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Gaussian Linear Regression as a

GLM



Step 1: Distributional Assumption

The first step of a GLM is to make a distributional assumption on the

response variable Yi .

For standard, Gaussian linear regression this assumption is that

Yi ∼ N (µi , σ
2
i )

This means that:

E (Yi ) = µi and var(Yi ) = σ2
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Step 2: Specify deterministic part

The second step of a GLM is to specify deterministic part, also called the

linear predictor:

η = Xβ.

η is expressed as linear combinations of unknown parameters β and the

matrix of independent variables X

In long form, this would look something like:

η = β0 + β1Xi1...+ βnXin
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Step 3: Specify the link

The third step of a GLM is to specify the ‘link’ between the expected

value of Yi and the deterministic part based on your distributional

assumption.

The expected value that Yi should take (without the stochastic

component) is:

E (Yi ) = µi .

So now we need to link η and E (Yi ) based on our distributional

assumption.

What’s the expected value of a Gaussian distribution? The mean, µ.

What’s the expected value of the deterministic model? η = Xβ.

So here µi = η = Xβ. We call this the identity link.
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Putting the pieces together

A GLM with a Gaussian distribution and an identity link is given by:

Yi ∼ N (µi , σ
2)

E (Yi ) = µi and var(Yi ) = σ2

µi = η = Xβ
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GLMs for count data



GLMs for count data

As biologists we often find ourselves sitting around counting things.

Source: Biocompare

... or standing
around

Source: NPS

... or kneeling
around

Source: Govt. of Western

Australia

... or diving
around

Source:

http://educationcareerarticles.com

... we count a lot of things.
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Count Data

If we want to model count data in a GLM framework the first step is

identify the right distribution.

Count data usually range between 0 and ∞.

They’re also usually discrete integers because we don’t count fractions of

things (unless those things were very unlucky...).

The Gaussian distribution is continuous and has support between

−∞,∞, so we can already tell it’s probably not a good option.

What we’re looking for is a discrete distribution with support between 0

and ∞. Any ideas? The Poisson distribution is a good candidate for

modelling count data.
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Poisson distribution

The Poisson distribution describes the probability of a given number of

events occurring in a fixed interval of time or space.

Parameters: λ

Type: Discrete

Biological scenarios: Counts of a

species per unit time, the number of

mutations on a strand of DNA per

unit length, number of births/deaths

per year in a given age group, prey

caught per unit time.

PMF: Pr(x = k) = λke−λ

k!

Range: discrete (0,∞)

Mean: λ

Variance: λ

Source: Wikipedia
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GLM Steps

So after step 1 we get:

Yi ∼ P(λ = µi )

The second step of a GLM is to specify deterministic part:

η = β0 + β1Xi1...+ βnXin

Note how this step hasn’t changed.

The last step is to link η and µi . Because η can be positive or negative,

we can’t use an identity link. Instead, we use a log-link to ensure the

fitted values are always positive:

log(µi ) = η or µi = eη
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How it works

Let’s say I have a model describing how many animals I see depending on

how long I sit on my back porch:

µi = 0.01 + 0.03× Xi
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How it works

Let’s say I have a model describing how many animals I see depending on

how long I sit on my back porch:

µi = 0.01 + 0.03× Xi with a log link this becomes: µi = e0.01+0.03×Xi
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How it works

But there will probably be some variance from ‘experiment’ to

‘experiment’

So: Yi ∼ Poisson(λ = e0.01+0.03×Xi ), giving us Poisson distributed errors
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How it works cont.

So when we fit a Poisson GLM we’re fitting a curve of the form eη with

Poisson distributed errors at each µi

Source: Zuur et al. 2009
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GLMs for count data in R



Abundance data

We’ll work with a simulated dataset of species abundance as a function

of deforestation.

With these data we’re interested in knowing what whether deforestation

influence species abundance.
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Linear regression on count data

We already know a Gaussian model isn’t a great choice, but let’s see

what that would look like.

library(nlme)

FIT <- gls(Abundance ~ Deforestation , data = DATA ,

method = "ML")

summary(FIT)

Generalized least squares fit by maximum likelihood

Model: Abundance ~ Deforestation

Data: DATA

AIC BIC logLik

849.5338 859.4287 -421.7669

Coefficients:

Value Std.Error t-value p-value

(Intercept) 3.797854 0.30782465 12.337720 0

Deforestation -0.045935 0.00527925 -8.700991 0

The residuals look terrible.
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Poisson GLM on count data

To improve this we can carry out the 3 steps of fitting a GLM:

1. Step 1: Make a distributional assumption on abundance. Poisson.

2. Step 2: Specify η. η = β0 + β1 ×Deforestation

3. Step 3: Specify the ‘link’ between the expect. of abund. and η. eη

FIT2 <- glm(Abundance ~ Deforestation ,

family = poisson(link = "log"),

data = DATA)

summary(FIT2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.805377 0.097964 18.43 <2e-16

Deforestation -0.037026 0.002738 -13.52 <2e-16

---

(Dispersion parameter for poisson family taken to be

1)

Null deviance: 570.51 on 199 degrees of freedom

Residual deviance: 342.97 on 198 degrees of freedom

AIC: 618.5

Are the residuals normally distributed? Should they be?
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Poisson GLM on count data

FIT2 <- glm(Abundance ~ Deforestation ,

family = poisson(link = "log"),

data = DATA)

summary(FIT2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.805377 0.097964 18.43 <2e-16

Deforestation -0.037026 0.002738 -13.52 <2e-16

---

(Dispersion parameter for poisson family taken to be

1)

Null deviance: 570.51 on 199 degrees of freedom

Residual deviance: 342.97 on 198 degrees of freedom

AIC: 618.5

Notice how we don’t have

‘residuals’ anymore. Instead we

have ‘deviances’.

Think of null and residual

deviances as GLM equivalents of

total and residual and sum of

squares.

GLMs don’t have an R2. An

approximation for this would be:

null deviance − resid deviance
null deviance × 100

570.51−342.97
570.51 × 100 = 39.9%
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Model diagnostics

So far we’ve been using residuals to assess a model’s fit, but we just saw

that GLMs don’t have ‘residuals’ in an OLS sense...

Residuals are just observed - expected (yi − µi ), which we can calculate.

So if our GLM model is performing well the spread in our predictions

should be even across the full range of deforestation values right?

The mean and variance of the Poisson distribution are the same, so the

spread will change for different values of µi . This makes Poisson GLM

(and all GLM) residuals very difficult to interpret.

The most important thing to look for are patterns and a lack of fit.

See Zuur et al. 2009 Section 9.8 for a detailed discussion of GLM

residuals
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Overdispersion

Switching from a Gaussian distribution to a Poisson distribution is often

a good fix for modelling count data, but it’s not always the most

appropriate dist. for count data.

One of the primary reasons why a Poisson won’t work very well on count

data is over-dispersion (because the variance is tied to the mean and

therefore less flexible).

Can you think of another option worth considering?
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Negative binomial distribution

The negative binomial distribution describes the number of failures in a

sequence of independent and identically distributed trials.

Parameters: p Probability per trial,

k Overdispersion parameter

Type: Discrete

Biological scenarios: Same as the

Poisson distribution, but allowing for

more heterogeneity because variance

6= mean.

PMF: Γ(k+r)
k!·Γ(r) p

k(1− p)r

Range: discrete (x ≥ 0)

Mean: pr
1−p

Variance: pr
(1−p)2
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Negative binomial GLM on count data

1. Step 1: Distributional assumption. Negative Binomial.

2. Step 2: Specify η. η = β0 + β1 ×Deforestation

3. Step 3: Specify the ‘link’ between the expect. of abund. and η. eη

library(MASS)

FIT3 <- glm.nb(Abundance ~ Deforestation ,

link = "log",

data = DATA)

summary(FIT3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.767992 0.166842 10.597 <2e-16

Deforestation -0.036120 0.003747 -9.639 <2e-16

---

(Dispersion parameter for Negative Binomial (1.6398)

family taken to be 1)

Null deviance: 312.80 on 199 degrees of freedom

Residual deviance: 194.39 on 198 degrees of freedom

AIC: 566.42

∆AIC of ∼52 suggests a big improvement over Poisson. Grey line is Poisson

GLM, do you see a big difference? Where is the benefit coming from? A better

description of the system’s stochastic component.
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