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Stochastic Simulation and the

Monte Carlo Method



Simulation

Everything we’ve been doing so far has been focused on parameter

estimation. This can been seen as ‘inverse’ modelling (i.e., we have the

data and we try to identify the process that generated it).

Simulation can be seen as ‘forward’ modelling. If we pick/build a model,

what patterns can we expect to see in data.

Biologists often use simulation in order to explore: i) patterns that would

emerge from a given model(s); or ii) plan future studies.

If we chain together simulations from multiple models we can generate

rich and complex descriptions of biological systems.
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Simulation cont.

Simulations can be useful for exploring the models and distributions

you’ve used to model a dataset (if you can ∼recreate your data via

simulation you know your model is probably reasonable).

Simulations can also be used to test parameter estimation procedures

and how models perform when assumptions are broken in known ways

(what we’ve been using them for throughout this course).

With real data we will never know the ‘true’ model, so we can never

know how close we’re getting. If we want to know how our estimations

will perform under different scenarios we need to rely on best-case

situations where the true model and distributions are known.

In the past any of these types of projects would require sophisticated

analyses but simulations make these accessible to a broader range of

biologists (learning sim. methods is easier than learning high level math).
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Stochastic simulation

Stochastic simulation is a special type of simulation that relies on

computational algorithms to randomly sample values from probability

distributions to emulate a system’s stochasticity (e.g. rnorm(),

runif(), etc.).

Monte Carlo methods are a broad class of computational algorithms

that rely on repeated random sampling to obtain numerical results.

Monte Carlo = Stochastic Simulation
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Stochastic sims: Single groups

If we know something about our system, we can generate simulated data

using the methods we’ve seen throughout the course.

Linear <- function(x) {

B_0 <- 2

B_1 <- 1

mu = B_0 + B_1*x

rnorm(n = length(x), mean = mu , sd = 2)}

X <- runif (40, 0, 20)

Y <- Linear(X)

Counts <- function(x) {

B_0 <- 0.01

B_1 <- 0.15

eta = exp(B_0 + B_1*x)

rpois(n = length(x), lambda = eta)}

X <- runif(40, 0, 20)

Y <- Counts(X)
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Stochastic sims: Multiple groups

We’re often interested in differences between groups (species, treatments,

study sites, etc.).

group <- factor(rep(1:2, each = 25))

Linear <- function(x) {

B_0 <- c(2,0)

B_1 <- c(1,2)

mu = B_0[ group] + B_1[ group]*x

rnorm(n = length(x), mean = mu , sd = 2)}

X <- runif (50, 0, 20)

Y <- Linear(X)

Counts <- function(x) {

B_0 <- c(0.01, 0)

B_1 <- c(0.15, 0.2)

eta = exp(B_0[ group] + B_1[ group]*x)

rpois(n = length(x), lambda = eta)}

X <- runif(50, 0, 20)

Y <- Counts(X)
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Stochastic sims: Multiple parameters

Our models often have multiple parameters and simulations can allow us

to explore individual effects holding all else constant.

Imagine a system where traffic volume and temperature influence the

number of road killed animals. We can use simulations to explore how

climate change might influence road kills.

Road_Kills <- function(x, x_2) {

B_0 <- 0.01

B_1 <- 0.15

B_2 <- 0.05

eta = exp(B_0 + B_1*x + B_2*x_2)

rpois(n = length(x), lambda = eta)}

X <- runif(80, 0, 20)

Deaths _15C <- Road_Kills(X, 15)

Deaths _20C <- Road_Kills(X, 20)

Deaths _25C <- Road_Kills(X, 25)
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Stochastic sims: Chaining simulations

If we chain together simulations from multiple models we can generate

rich descriptions of complex systems.

POP <- as.vector (200)

for(i in 1:200){

Births <- rpois(1, 40)

Deaths <- rpois(1, 38)

POP[i+1] <- POP[i] + Births - Deaths}

POP2 <- as.vector (200)

for(i in 1:200){

Births <- rpois(1, 40)

Deaths <- rpois(1, 38)

RK_Deaths <- Road_Kills(2, 15)

POP2[i+1]<-POP2[i]+Births -Deaths -RK_Deaths}

...

RK_Deaths <- Road_Kills(5, 20)

...

...

RK_Deaths <- Road_Kills (10, 25)

...
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Simulation take homes

With simulation studies you can easily manipulate any ingredient in your

models (model params, data, params of the distributions). This makes

simulations a very powerful tool for exploring biological systems and

making data informed predictions.

With simulation studies you can easily manipulate any ingredient in your

models (model params, data, params of the distributions). This makes

simulations a potentially dangerous tool for exploring biological systems

and making data informed predictions.

Always approach simulation studies with care and make sure the

computational system you put together matches the biological reality of

the system you are trying to study.
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Power Analysis



Power analysis

Power analysis, in a traditional sense, means identifying the minimum

sample size needed to detect the presence of a real effect if one is present.

It is traditionally associated with design based inference and pairwise

hypothesis testing (ANOVAs, t-tests, etc.).

In model based inference each parameter has it’s own effect, so the

concept translates, but the tools required are different. There’s also more

to a model than just it’s power.

Power analysis in our context involves a special kind of simulation study

aimed at exploring how much data you would need in order to get

reasonably accurate estimates of your parameters, detect significance of

parameters with true effects, and/or detect differences between groups.
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Precision and accuracy

Ultimately, the quality of the inference we can make from our analyses

boils down to two main factors, a model’s accuracy and it’s precision.

Accuracy specifies how likely your answer is to be correct

Precision describes variability in the estimates.
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Precision and accuracy cont.

The precision and accuracy of an estimator can be estimated through a

number of different measures:

1. Bias (accuracy)

2. Variance (precision)

3. Confidence interval width (precision)

4. Mean squared error (MSE: accuracy and precision)

5. Coverage (accuracy)

6. Power (precision)
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Statistical bias (accuracy)

Bias is the expected difference between an estimate (d̂) of a parameter

and its true value (d).

Ideally estimators should be asymptotically unbiased (as

n→∞ E [d̂ − d ]→ 0 )
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Variance and CI width (precision)

Variance measures the variability of individual estimates (d̂) around the

mean estimate (E [d̂ ]).

Low variance will give narrow CIs, large variance will give wide CIs
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MSE (accuracy & precision)

Mean squared error (MSE) is a measure that combines both accuracy

and precision and is calculated as E [(d̂ − d)2].

It provides a measure of total variation around the truth.
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CI Coverage (accuracy)

CI coverage described the accuracy of a set of confidence intervals.

If 95% CIs are behaving like they should, they will include (cover) the

truth 95% of the time.
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Statistical power (precision)

Type I (α) – False positive (i.e., observe an effect that isn’t present).

Type II (β) – False Negative (don’t detect an effect that is present).

Statistical power (1-β) – a measure of our ability to detect a real effect.
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Statistical power (precision)

Type I (α) – False positive (i.e., observe an effect that isn’t present).

Type II (β) – False Negative (don’t detect an effect that is present).

Statistical power (1-β) – a measure of our ability to detect a real effect.
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Statistical power (precision)

If we want to increase the power of a test there are two options:
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Statistical power (precision)

If we want to increase the power of a test there are two options:

1) increase effect size
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Statistical power (precision)

If we want to increase the power of a test there are two options:

1) increase effect size; or 2) make the distributions narrower (↑ N)
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Statistical power (precision)

Some experimental designs can change effects sizes but we usually don’t

have control over this, so we typically ↑ sample sizes to ↑ power.
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Power Analysis in Action



Power Analysis: Linear Regression

Let’s estimate the statistical power of detecting a linear trend with a

sample size of 20.

Linear <- function(x) {

B_0 <- 2

B_1 <- 0.5

mu = B_0 + B_1*x

rnorm(n = length(x), mean = mu , sd = 8)}

nSims <- 500

pval <- numeric(nSims)

for(i in 1: nSims){

X <- runif (20, 0, 20)

Y <- Linear(X)

fit <- lm(Y ~ X)

pval[i] <- coef(summary(fit))["X", "Pr(>|t|)"]}

sum(pval < 0.05)/nSims

0.326
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Power Analysis: Linear Regression

Most of the time were interested in power for multiple sample sizes.

We can code this using nested for loops.

nSims <- 500

n <- seq(5,150,5)

POWER <- numeric(length(n))

for(j in 1: length(n)){

pval <- numeric(nSims)

for(i in 1:nSims){

X <- runif(n[j], 0, 20)

Y <- Linear(X)

fit <- lm(Y ~ X)

pval[i] <-coef(summary(fit))["X", "Pr(>|t|)"]

}

POWER[j] <- sum(pval < 0.05)/nSims

}
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Power Analysis: Linear Regression

Let’s say we knew our maximum sample size was 20, we could also

estimate the smallest effect size (slope) we could reasonably detect.

Linear <- function(x, B_1) {

B_0 <- 2

B_1 <- B_1

mu = B_0 + B_1*x

rnorm(n = length(x), mean = mu , sd = 8)}

nSims <- 500

B_1 <- seq(0,2,0.1)

POWER <- numeric(length(B_1))

for(j in 1: length(B_1)){

pval <- numeric(nSims)

for(i in 1:nSims){

X <- runif (20, 0, 20)

Y <- Linear(X, B_1[j])

fit <- lm(Y ~ X)

pval[i]<-coef(summary(fit))["X", "Pr(>|t|)"]

}

POWER[j] <- sum(pval < 0.05)/nSims

}
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Detecting differences between groups

We might also be interested in estimating our ability to detect differences

between groups.

Counts <- function(x,group) {

B_0 <- c(0.01 , 0)

B_1 <- c(0.15 , 0.2)

eta = exp(B_0[ group] + B_1[ group]*x)

rnbinom(n = length(x), mu = eta , size = 10)

}

nSims <- 500

n <- seq (10 ,100 ,10)

POWER <- numeric(length(n))

for(j in 1: length(n)){

pval <- numeric(nSims)

for(i in 1:nSims){

X <- runif(n[j], 0, 20)

group <- factor(rep(1:2, each = n[j]/2))

Y <- Counts(X,group)

fit <- glm.nb(Y ~ X + group ,link = "log")

pval[i] <- coef(summary(fit))["group2", "Pr

(>|z|)"]

}

POWER[j] <- sum(pval < 0.05)/nSims

}
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Power to detect multiple effects

Regression models often contain multiple parameters with different effect

sizes and we might be interested in knowing the power for different

effects.

Blue: β1 = 1; Red: β2 = 0.5; Purple: β3 = .01
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Quality of estimates

Sometimes we’re not just interested in whether we can detect

significance, but in how close to the ‘true’ parameter values we can get.

This requires understanding bias, variance and coverage.

Linear <- function(x) {

B_0 <- 2

B_1 <- 0.5

mu = B_0 + B_1*x

rnorm(n = length(x), mean = mu , sd = 8)}

nSims <- 500

n <- seq(5,200,1)

BIAS <- numeric(length(n))

VARIANCE <- numeric(length(n))

COVERAGE <- numeric(length(n))

for(j in 1: length(n)){

bias <- numeric(nSims)

coverage <- numeric(nSims)

for(i in 1:nSims){

X <- runif(n[j], 0, 20)

Y <- Linear(X)

fit <- lm(Y ~ X)

bias[i] <- coef(fit)[2] - 0.5

coverage[i]<-(0.5<= confint(fit)[2 ,2]&0.5 >= confint(fit)[2 ,1])

}

BIAS[j] <- mean(bias)

VARIANCE[j] <- var(bias)

COVERAGE[j] <- sum(coverage)/nSims

}
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Pseudocode



Simulations and pseudocode

All of the tools we’ve discussed today involve putting together R code

with multiple, interconnected steps.

When designing simulation studies or power analyses it is always a good

idea to start by writing down a pseudocode.

Pseudocode is a plain language description of the steps in a computer

algorithm (i.e., a recipe that you expect to follow).

The more detail you put in your pseudocode, the easier it will be to write

the computer code (you can also use this as a guide when describing your

methods).

A pseudocode can also be translated to another coding language more

easily.
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Example pseudocode

The pseudocode for estimating the statistical power

of detecting a linear trend would look like this:

1. Define σ, β0, β1, the # of sims, and the sample sizes to test.

2. Build a function for simulating from simple linear model.

3. Build a for loop that simulates data and fits models nSims times.

4. Extract and store the p values from each iteration.

5. Nest this in a for loop that iterates over the different sample sizes.

6. Calculate the power for each sample size and store the results.

7. Plot the results for interpretation.
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Pseudocode examples

Hilborn & Mangel (1997) is full of examples of pseudocode if you’re

interested in seeing what that looks like.
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Take home messages

Simulations can put practicing biologists on equal footing with

experienced mathematicians. This makes them potentially powerful tools

for understanding biological systems and generalising the results of our

analyses.

Simulations can also help us understand how a system might be expected

to respond to conditions that we can not/couldn’t measure.

Always remember that the more moving pieces a simulation setup has,

the harder the outcomes can be to understand. Carefully tailored

simulations are often more informative than complex simulations that we

can’t keep track of.

Simulations can also help us understand the statistical power of our

data/model ... but good experimental design is more important than

simulation based power analysis (don’t overthink it).
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