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The ‘Linear’ in Linear Regression



Linear Regression

All of the models we’ve been working with so far are categorised as

‘linear’ deterministic functions. We say linear not because of the shape of

the relationship, but because our regression parameters βn are linear

combinations of one another.

µ = β0 + β1x1 + β2x2 µ = β0+β1x1+β2x
2
1+β3x

3
1 µ = eβ0+β1X

1+eβ0+β1X

Even if we add polynomial terms, or fit GLMs with link functions the βs

still combine linearly.

Biol 520C: Statistical modelling for biological data 4



Biology is not always linear

Biological systems are not always linear, and you will need to become

familiar with a wide range of deterministic functions.

Today we will learn about tools that can help you understand new

functions, and explore a range of different functions that get used

routinely.
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Finding Out About Functions

Numerically and Analytically



Finding out about functions

When you encounter a new function you need to be able to look at it’s

form and get a feeling for its behaviour. There are two main ways you

can do this:

1. Numerically (plugging in numbers and observing changes)

2. Analytically (evaluate it mathematically using e.g., limits, and

derivatives)
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Finding out about functions numerically

R can be a useful too for evaluating

functions numerically.

Start by building a function() to

describe the model, next define

parameter values, run your function

on a range of x values, plot the

results.

You would then repeat this process

for multiple parameter values.

For the Ricker function

(y = axe−bx), the process would

look like this:

ricker <- function(x, a = 1, b = 1) {

a * x * exp(-b * x)

}

x <- seq(0,10, 0.1)

y <- ricker(x)

y2 <- ricker(x, a = 0.5)

y3 <- ricker(x, b = 2)
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Numerical evaluations cont.

If you have multiple parameters you

can use surface plots to explore how

different inputs change outcomes.

... but 3D plotting in R is limited,

and >2 params becomes unwieldy.

The curve3d function from the

emdbook package (for Bolker’s

book) allows you to relatively easily

create surface plots.

If mortality risk can be modelled as

a function of density (N) and size

dependent attack rates (α(s)) using

a Holling Type II functional response

(y = α(s)/(1 + α(s)HN)) (Vonesh

& Bolker, 2005), then:

library(emdbook)

mortrisk <- function(N, size , H = .84) {

a <- ricker(size)

a/(1 + a * N * H)

}

curve3d(mortrisk(N = x, size = y),

to = c(60,6),theta = 50,

xlab = "Density",

ylab = "Size",

zlab = "Mortality Risk")
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Finding out about functions analytically

Exploring functions numerically can be quick and easy, and doesn’t

require much math, but it can be limited/involve a lot of guessing.

Fully understanding how functions work requires evaluating them

analytically.

Today we’ll cover two ways for doing this:

1. Taking limits

2. Using derivatives
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Limiting behaviour

It’s often useful to know how certain functions are expected to behave at

either end. This is known as their ‘limiting behaviour’.

To understand the limiting behaviour of a function we look at what

happens when x gets large (x →∞), or when x gets small (x → 0 or

x → −∞)

As x tends towards these limits terms get dropped and we get a feel for

what the tail ends of the function would look like.
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Michaelis-Menten limits

The Michaelis-Menten function is a well known

function the limits to an asymptote and is given by:

y = ax
b+x

What happens in the limit where x →∞?

ax
b+x x � b, so b + x ≈ x ax

x , a�x
�x

= a

What happens in the limit where x → 0?

ax
b+x

a0
b+0

0
b = 0

So we now know the limits of this function are 0 and a.
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Ricker limits

The Ricker function is a common function for

modelling density dependence and is given by:

y = axe−bx

What happens in the limit where x → 0?

y = axe−bx ax → 0, and −bx → 0, so we get 0e0 = 0

What happens in the limit where x →∞?

y = axe−bx ax →∞, and −bx → −∞, so we get ∞e−∞

Exponents are stronger than powers, and powers are stronger than linear

terms, so e−∞ outweighs ∞ and axe−bx → 0 as x →∞

So we now know the limits of this function are 0 and 0.
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Derivatives

Knowing the limiting behaviour of functions is useful, but it’s also good

to know how the functions increase/decrease towards them.

To understand this we need to take derivatives of our functions with

respect to x .

Usefully, we can work out simple derivatives in R with the D() function.
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Michaelis-Menten derivative

We know the Michaelis-Menten function limits to 0

and a:

y = ax
b+x

But how does it approach its limits?

michmen = expression(a * x / (b + x))

D(michmen , "x")

a/(b + x) - a * x/(b + x)^2

The rate of change in Y is greatest as X → 0, and limits to 0 as X →∞
(called a saturating function)
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Ricker derivative

We know the limits of the Ricker function are 0 and 0.

y = axe−bx

But how does it approach its limits?

Ricker = expression(a * x * exp(-b * x))

Ricker_deriv <- D(f,"x")

a * exp(-b * x) - a * x * (exp(-b * x) * b)

The rate of change in Y is greatest as X → 0, it starts off growing but

hits an inflection point, it then decays and the rate of change limits to 0

as X →∞ (saturating)
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Take homes

If you know how to find out about a function’s behaviour (numerically or

analytically), you can get a better feeling of what each of the parameters

are doing.

You can then change their values, shift or scale the functions, match

them to biological parameters (remember they will all have units), etc.

All of this helps you get a better feel for how you can build functions to

match the system you’re modelling.
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Deterministic Functions for

Modelling Biological Data



Polynomial functions

Polynomial functions have the general form y =
∑n

i=1 βix
i

Examples:

Linear: f (x) = β0 + β1x

Quadratic: f (x) = β0 + β1x + β2x
2

Cubic: f (x) = β0 + β1x + β2x
2 + β3x

3

Range: −∞,∞

Advantages: Easy to understand; easy to reduce; easy to extend to

higher orders; can fit arbitrarily complex data.

Disadvantage: Anything beyond 2nd order polynomials are hard to justify

mechanistically; they don’t level off as X →∞ or −∞ (extrapolations

are often unrealistic); higher order polynomials can be unstable.
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Piecewise polynomial functions

Polynomial functions can be made more flexible by using them as

piecewise functions where different functions apply over different ranges

of your predictor (x).

Examples:
Threshold:

f (x) = a1 if x < s1, a2 if x > s1

Hockey stick:

f (x) = a + bx if x < s1, a + bs1 if x > s1

Piecewise linear:

f (x) = a + bx if x < s1, a + b1s1 + b2(x − s1) if x > s1

Cubic splines:

f (x) is complicated.

Range: −∞,∞

Advantages: Make sense and give added flexibility if there is a biological

switching point.

Disadvantage: Hard to fit; discontinuous derivatives that may not make

biological sense.
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Rational functions

Rational functions are ratios of polynomials with the general form:
∑

aix
i∑

bjx j

Examples:

Hyperbolic: f (x) = a
b+x

Michaelis-Menten: f (x) = ax
b+x

Holling type III: f (x) = ax2

b2+x2

Holling type IV (c<0): f (x) = ax2

b+cx+x2

Range: 0,∞

Advantages: Very flexible; often make mechanistic sense; simple to

estimate parameters; easy to reduce down; reach finite asymptotes so are

more stable than polynomials.

Disadvantage: Complicated derivatives; Approach their asymptotes very

slowly, which can make these hard to estimate.

Biol 520C: Statistical modelling for biological data 21



Exponential functions

Exponential functions are based on exponential growth (aebx),

exponential decay (ae−bx), or saturating exponential functions

(a(1− e−bx)). Their range is 0,∞.

Advantages: Exponential growth/decay occur commonly in nature and

these function make mechanistic sense; can be used to calculate doubling

times or half-lives.

Disadvantage: Similar behaviour to rational functions which makes it

hard to distinguish between them without a lot of data.
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Comb. of exponentials with other fncs.

Exponential functions can be combined with other functions to increase

their flexibility. Their ranges are 0,∞.

Examples:

Ricker: f (x) = axe−bx

Logistic: f (x) = ea+bx

1+ea+bx

von Bertalanffy:

f (x) = a(1− e−k(1−d)(x−x0))(
1

1−d
)

Gompertz: f (x) = e−ae−bx

Range: 0,∞
Advantages: Very flexible; often make mechanistic sense; simple to

estimate parameters; easy to reduce down; reach finite asymptotes so are

more stable than polynomials.

Disadvantage: Similar behaviour to other functions which makes it hard

to distinguish between them without a lot of data.
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Fitting Non-Linear Models in R



Fitting Non-Linear Models in R

Fitting non-linear models in R is only slightly more challenging than

fitting linear regressions.

The nls() function allows fitting of non-linear relationships between a

response variable and one or more explanatory variables using non-linear

least squares.
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Kill rate data

We’ll work with a simulated dataset describing size-dependent predation

rate.

Does a linear model look like a good option here? What deterministic

function do think we should try?
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Kill rate data cont.

We can fit a Ricker function to the data using the nls() function.

#Need to provide starting values for the parameters

FIT <- nls(prop ~ a * size * exp(-b * size),

start = list(a = 1,

b = 2),

data = DATA)

summary(FIT)

Formula: prop ~ a * size * exp(-b * size)

Parameters:

Estimate Std. Error t value Pr(>|t|)

a 0.96502 0.04175 23.11 <2e-16 ***

b 1.97821 0.05528 35.79 <2e-16 ***

---

Residual standard error: 0.02352 on 98 degrees of freedom

#To plot fitted model need to code up the Ricker function

ricker <- function(x) {

coef(FIT)[1] * x * exp(-coef(FIT)[2] * x)

}

x <- seq(0,3, 0.01)

y <- ricker(x)
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Technical considerations

The parameters of non-linear models can be very tricky to estimate.

Without good starting values the models can fail to fit properly (this will

happen more than you like in practice). The better you are at

understanding how the parameters of a particular function work, the

easier it will be to eyeball reasonable starting values.

Unlike lm(), nls() requires that the formula includes all of the

parameters you want to fit, including an intercept if you want one fitted.

E.g., in lm() you would write the formula for linear regression as:

y ∼ x

but to fit the same model in nls() you would have to write this as:

y ∼ a + b*x
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Take homes

We covered some of the most common functions, but the full list of

possibilities is infinite.

The better you get building a working knowledge of deterministic

functions, the better you will get at building models to fit and make

theoretical predictions (very useful knowledge to have in your tool-belt).

If you’re interested in learning more about the range of functions

commonly used in biological modelling, absolutely do read Chapter 3 of

Bolker’s book (p. 88 is especially useful).

If you combine these functions with a stochastic model and maximum

likelihood estimation you can fit any model you can write down to data

(Chapter 8 of Bolker’s book).
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