
Point Processes 1: Spatial Intensity

Michael Noonan

DATA 589: Spatial Statistics



Table of contents

1. Review

2. Applied Points Pattern Analysis

3. Points Patterns

4. Point Intensity

DATA 589: Spatial Statistics 2



Review



Review

Last lecture we covered the big picture value of spatial data, and touched

on the different types of spatial data (points vs. spatial measurements).

This lecture we will explore the concept of ‘point’ data and ‘point’

processes, and learn some basic descriptive statistics for describing them.
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Applied Points Pattern Analysis



Urban Planning

Morales & Laurini (2021) used point pattern analyses to model the

location patterns of new firms in the city of São Paulo.

Used these models to understand what urban features lead to

development, but this could also be used predict outcomes from e.g.,

adding new bus lines.
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Points Patterns



Points as data

A spatial point pattern is a dataset comprised of the locations of ‘things’

or ‘events’.

Galaxies in Laniakea Supercluster Mitochondria in a cell

Trees in a forest, locations of road traffic accidents, crimes, incidents of

diseases, etc...
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Marked points

Sometimes we have points of several

types

Source: spatstat package

...or a marked point pattern (i.e.,

auxiliary information).

Source: spatstat package
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Sampling window

Point processes always need to be accompanied by information on the

sampling ‘window’ (critical).

Without the sampling window we can’t estimate metrics correctly.

Source: spatstat package Source: spatstat package
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Sampling window cont.

Without the sampling window we can’t estimate metrics correctly.

Are these trees clustered?

Source: freepik.com

Are these trees clustered?

Source: conservationcorridor.org/

DATA 589: Spatial Statistics 11



Covariates

Often we have information on potential explanatory variables (i.e.,

covariates).

Source: spatstat package
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Points pattern analysis

The spatial arrangement of the ‘points’ is the focus of investigation (e.g.,

spatial trends in the density of points, relationships with covariates).

The analysis of point patterns can provide key evidence in many fields of

research (ecology, epidemiology, geoscience, astronomy, crime research,

cell biology, econometrics, etc...)

Cholera in 1854

Source: Wikipedia

COVID-19 in 2019

Source: (Worobey et al., 2022)
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Points as data cont.

...but the human eye is often not able to objectively assess point patterns.

Are these water striders territorial, or randomly dispersed?

Source: Cleveland Museum of Natural History
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Points as data cont.

Are the locations of Japanese black pine saplings clustered on the

landscape? competing for light/nutrients?

Source: spatstat package

Clearly we need a way to carry out formal, objective analyses.
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Point Intensity



Finnish Pine Dataset

Today we will work with a dataset describing the locations of 126 pine

saplings, their heights (in m) and their diameters (in cm), in a Finnish

forest.

Source: spatstat package
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Descriptive Statistics

With some point data in hand, the first thing we usually want to do is

visualise our data and calculate some summary statistics

...and the first summary statistics we want to calculate is the average

number of points per unit area (i.e., our ‘expectation’, or ‘first moment’).

In point pattern analysis, this quantity is called the ‘intensity’, denoted λ.

Note: estimating the intensity generally requires few assumptions.

DATA 589: Spatial Statistics 18



Intensity

Under an assumption of homogeneity, the expected number of points

falling within B is proportional to the area of B:

E[nX ∩ B] = λ|B|

where E[nX ∩ B] is the expected number of points in B

λ is the intensity (in points per unit area)

|B| is the area of B (in units of area)
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Intensity cont.

The simplest estimator of λ is just the number of points in our window

B, divided by the area of B

λ̂ = n(x)
|B|

#Load in the necessary packages

library(spatstat)

#Load in and plot the Finnish pines dataset

data(finpines); plot(finpines , use.marks = F)

#Estimate intensity by hand

npoints(finpines)/area(Window(finpines))

[1] 1.26

#Get units

unitname(finpines)

metre / metres

#Estimate intensity automatically

intensity(finpines)

[1] 1.26

i.e., 1.26 trees per m2
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Weighted intensity

For marked datasets, we might also be interested in a weighted intensity.

E.g., the Finnish pines dataset has information on the heights (in m) and

diameters (in cm) of the saplings.

Assuming the trees are cones, we can estimate their volumes as πhd2

12 .

head(marks(finpines) ,3)

diameter height

1 1 1.7

2 1 1.7

3 1 1.6

#Calculate the volume of each tree

height <- marks(finpines)$height
diameter <- marks(finpines)$diameter /100
volume <- (pi * height * diameter ^2)/12

#Estimate the weighted intensity

intensity(finpines , weights = volume)

[1] 0.001273693

i.e., ∼0.0013 m3 of wood per m2
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Bias

Area of Canada: ∼ 8,788,702.8 km2

Population of Canada: ∼ 36,991,981

λ̂ = 36,991,981
8,788,702.8 = 4.2 people/km

2
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Generalised intensity

Estimating the intensity in this way assumes homogeneity (i.e., λ is

constant in space).

In most real scenarios, λ is likely to be spatially varying.

... which means our estimate would be biased and misrepresentative.
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Generalised intensity cont.

When λ is spatially varying, the intensity at any location u is λ(u).

The number of points falling in B is thus given by the integral of the

intensity function within B

E[n(X ∩ B)] =
∫
B
λ(u)du

...which means we now need an estimator of λ(u).
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Quadrat counting

When λ is spatially varying, λ(u) can be estimated nonparametrically by

dividing the window into sub-regions (i.e., quadrats) and using our simple

points/area estimator.

The number of points n falling in each quadrat j , is nj = n(x ∩ Bj) for

j = 1 . . . ,m, which is an unbiased estimate of E[n(X ∩ Bj)].

We can therefore estimate the intensity in each quadrat by counting the

number of points in each quadrat divided by the quadrat’s area

ˆλ(j) =
n(x∩Bj )
|Bj | for j = 1 . . . ,m
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Quadrat counting in R

#Split into a 3 by 3 quadrat and count points

Q3by3 <- quadratcount(finpines ,

nx = 3,

ny = 3)

#Plot the output

plot(finpines , pch = 16,

use.marks = F, cols = "#046 C9A")

plot(Q3by3 , cex = 2, col = "red", add = T)

#Estimate intensity in each quadrat

intensity(Q3by3)

x

y [-5,-1.67) [ -1.67 ,1.67) [1.67 ,5]

[-1.33,2] 1.08 1.08 2.34

[ -4.67 , -1.33) 0.99 0.90 0.54

[-8,-4.67) 1.35 1.98 1.08

#Plot the output

plot(intensity(Q3by3 , image = T))
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Test of homogeneity

Quadrat counting suggests a spatially varying λ(u), but point processes

are stochastic and some variation is expected, so how can we objectively

test for spatial homogeneity?

Under a null hypothesis that the intensity is homogeneous, and if all

quadrats have equal area, then the expected number of points falling in

each quadrat, j , is just λaj , where aj is the area of each quadrat.

We can therefore test for significant deviations from complete spatial

randomness (CSR) using a χ2 test

χ2 = Σj
(observed−expected)2

expected = Σj
(nj−λ̂aj )2

λ̂aj
,

where λ̂ is estimated using the points/area estimator.
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Test of homogeneity in R

This test can be performed using the quadrat.test() function from the

spatstat package.

#Quadrat test

quadrat.test(Q3by3)

Chi -squared test of CSR using quadrat counts

data:

X2 = 22.143 , df = 8, p-value = 0.009316

alternative hypothesis: two.sided

Quadrats: 3 by 3 grid of tiles

...which suggests that there’s a significant deviation from homogeneity.

DATA 589: Spatial Statistics 28



Test of homogeneity caveats

This test shows up regularly, but the p-value doesn’t provide any

information on the cause of inhomogeneity.

Significant deviations can be due to the processes being inhomogenous,

but also due to a lack of independence.

Result is sensitive to the size of the quadrats (recommended to compute

multiple times and plot the test statistics vs. quadrat size).
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Kernel density estimation

A spatially varying, λ(u) can also be estimated nonparametrically by

kernel density estimation.

Kernels estimate λ(u) by placing ‘kernels’ on each datapoint (often

bi-variate Gaussian) and optimising the ‘bandwidth’ (i.e., the standard

deviation of the kernel).

In practice, there are many different bandwidth optimisers, kernel shapes,

and bias corrections for estimating λ̂(u) (beyond the scope of this

course).
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KDE: Start with data
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KDE: Place kernels on data

DATA 589: Spatial Statistics 32



KDE: Optimize bandwidth.
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KDE: Optimize bandwidth..
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KDE: Optimize bandwidth...
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Kernel estimation in R

#Density estimation of lambda(u)

lambda_u_hat <- density(finpines)

#Plot the output

plot(lambda_u_hat)

plot(finpines , pch = 16,cex = 1.2,

use.marks = F, add = T)

plot(finpines , pch = 16, cex = 0.9,

use.marks = F, cols = "white", add = T)

Comparable results to quadrat

estimation, but with finer-scale

resolution.
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Kernel estimation considerations

Kernel estimation is the most efficient non-parametric density estimation

technique, but can be sensitive to data features and the chosen

estimation technique.

Weighted kernel estimation can be carried out via the weights argument

of the density() function.

The default uses a single bandwidth across the whole dataset, but this

can be relaxed by using adaptive smoothing via the

adaptive.density() function.

This estimate of λ̂(u) (points/area) assumes the window is perfectly flat,

so topography can bias this estimate.

DATA 589: Spatial Statistics 37



Hot spots

If the intensity is inhomogeneous, we often want to identify areas of

elevated intensity (i.e., hotspots).

Identifying hotspots can provide valuable information on a spatial

processes (e.g., high crime areas, a high density of artifacts at an

archeological dig, dense clusters of galaxies in the universe).

Which tools we should use for detecting hot spots is still an open-ended

question.

DATA 589: Spatial Statistics 38



Hot spot analysis

The best place to start is usually with the kernel estimate (zones of

elevated intensity are usually clearly visible).

Sometimes a visual assessment is sufficient (depends on goals).
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Hot spot analysis cont.

If we need something more objective, one option is a ‘scan test’:

• At each location u, we can draw a circle of radius r .

• We can then count the number of points in nin = n(x ∩ b(u, r)) and

out nout = n(x ∩W /∈ b(u, r)) of the circle.

• Under an assumption that the process is Poisson distributed, we can

calculate a likelihood ratio test statistics for the number of points

inside vs. outside of the circle (details in spatstat textbook).

• The null distribution is ∼ χ2 with 1 degree of freedom (allowing us

to calculate p-values).
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Hot spot analysis in R

A likelihood ratio test can be undertaken via the scanLRTS() function

from the spatstat.explore package.

# Estimate R

R <- bw.ppl(finpines)

#Calculate test statistic

LR <- scanLRTS(finpines , r = R)

#Plot the output

plot(LR)

#Compute p-values

pvals <- eval.im(pchisq(LR,

df = 1,

lower.tail = FALSE))

#Plot the output (filtered for p < 0.01)

plot(pvals)
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Relationships with covariates

We are usually interested in determining whether the intensity depends

on a covariate(s).

Source: spatstat package

A visual assessment may be informative, but is unlikely to be sufficient.
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Quadrate counting

The simplest approach to check for a relationship between λ(u) and a

spatial covariate Z (u) is via quadrat counting.

#Extract elevation information

elev <- bei.extra$elev

#define quartiles

b <- quantile(elev , probs = (0:4)/4, type = 2)

#Split image into 4 equal -area quadrats based on elevation values

Zcut <- cut(elev , breaks = b)

V <- tess(image = Zcut)

#Count points in each quadrate

quadratcount(bei , tess = V)

tile

(120 ,140] (140 ,144] (144 ,150] (150 ,159]

714 883 1344 663
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Relative distribution estimate

More formally, in testing for relationships with covariates we are assuming

that λ is a function of Z , such that

λ(u) = ρ(Z (u))

A non-parametric estimate of ρ can be obtained via kernel estimation,

available via the rhohat() function.

#Estimate Rho

rho <- rhohat(bei , elev)

plot(rho)

DATA 589: Spatial Statistics 44



Take home messages

A spatial point pattern is a dataset comprised of the locations of ‘things’

or ‘events’, and the spatial arrangement of the ‘points’ is the focus of

investigation.

The formal analysis of a point process usually begins with a descriptive

analysis of the intensity (many tools and few assumptions).

Spatial patterns in intensity can provide valuable information on a point

process, but many of the tests are sensitive to they way they are setup,

so results should be interpreted with care.

Next lecture we will focus on how to describe the relationships between

points (second moment descriptive statistics).
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