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Review



Review

Last lecture we introduced the concept of a spatial point pattern, and

how the spatial arrangement of the ‘points’ is the focus of investigation

in point pattern analysis.

We saw how the formal analysis of a point process usually begins with a

descriptive analysis of the intensity (first moment quantities).

We learned how the spatial patterns in intensity can provide valuable

information on a point process, but many of the tests (e.g., kernel

estimation, quadrat counting) are sensitive to they way in which they are

setup, so analyses should be applied with care.

Today we will focus on how to describe the relationships between points

(second moment quantities).
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Applied Points Pattern Analysis



Health care access

Ni et al. (2016) used point pattern analyses to study the characteristics

of the spatial distribution of healthcare facilities in Nanjing.
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Health care access cont.

Using the K -function, they found that higher-tier hospitals were clustered

in space and concentrated in older parts of the city, whereas lower-tier

hospitals were randomly distributed.
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Relationships Between Points



Relationships between points

The spatial intensity of a process provides us with information on the

number of points we can expect to find at any location u

... but says nothing about the relationships between points.
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Relationships between points cont.

Points can have a tendency to avoid one another, be independent, or

cluster.
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Relationships between points cont.

This can generate patterns in the intensity but we don’t know if this is

caused by environmental factors or relationships between points.
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Correlations

In order to fully understand a point process we need to be able to

describe the correlation between points.

In statistics, first moment quantities describe the mean value of a

random variable X , second moment quantities describe the mean of X 2

(variance, standard deviation correlation, etc.).

For a point process X , the second moment of n(X∩B) can be interpreted

as describing patterns in the pairs of points xi , xj falling in set B.
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Correlation caveats

1. Accurately describing correlations, n(X ∩ B)2, requires a an accurate

description of the mean, n(X ∩ B).

2. Correlations are summary statistics and do not inherently imply

causation.
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Morisita’s Index



Describing correlations

If we’re interested in describing correlations, an easy place to start is with

a simple descriptive statistic.

If we subdivide the window into equally sized, m, quadrats, we can count

how often a pair of points falls in the same quadrat.

Formally, for a process with n points, there are n(n − 1) ordered pairs of

distinct points.

When there are m quadrats, the jth quadrat contains nj(nj − 1) ordered

pairs of distinct points, and the total number of ordered pairs of distinct

points which fall inside the same quadrat is Σjnj(nj − 1).

DATA 589: Spatial Statistics 15



Describing correlations cont.

The ratio

Σjnj (nj−1)
n(n−1)

describes the fraction of all pairs of points which both fall in the same

quadrat.

Under an assumption of homogeneity, the probability of a pair of points

falling inside equally sized quadrats is just 1
m , giving us Morisita’s Index:

M = m
Σjnj (nj−1)
n(n−1) .

Should be close to 1 if points are independent of one another, lower than

1 if there is avoidance, and greater than 1 if there is attraction.
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Morisita’s index

Morisita’s Index for 3 different point patterns (miplot() function).
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Morisita’s index cont.

Morisita’s index can serve as a useful visual diagnostic tool... but the

derivation assumed homogeneity.

Large values of M can occur without any underlying attraction between

point when intensity is inhomogenous (e.g., your spatial distribution on

campus is governed by the need to be in this room, your distribution in

this classroom is governed by the arrangement of the seats, Morisita’s

index would suggest some level of attraction).

If the assumption of homogeneity is broken, the index is not well defined

and unlikely to be trustworthy.

The index is based on crude subdivisions, so not sensitive to subtle,

fine-scale changes.
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Ripley’s K -function



Motivation

Morisita’s index describes correlations based on the rate at which pairs of

points are found ‘close’ together

...but if we’re interested in the spacing (or distance), why not just build

our metric directly off of the separation distances dij = ||xi − xj || between

all ordered pairs of distinct points?

Different patterns in clustering should result in different patterns in

separation distances.
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Pairwise CDF

Let’s start by considering the cumulative distribution of pairwise

separation distances

Ĥ(r) = fraction of values of dij < r

=
1

n(n − 1)

n∑
i=1

n∑
j=1

1{dij ≤ r}

where 1{dij ≤ r} = 1 if true, and 0 if false,

and the sum is taken over all ordered pairs where the indices aren’t equal

i.e., Ĥ(r) is the fraction of pairs of points separated by a distance ≤ r .
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Pairwise CDF cont.

Ĥ(r) = fraction of values of dij < r

=
1

n(n − 1)

n∑
i=1

n∑
j=1

1{dij ≤ r}

DATA 589: Spatial Statistics 22



Pairwise CDF cont.

Ĥ(r) = fraction of values of dij < r

=
1

n(n − 1)

n∑
i=1

n∑
j=1

1{dij ≤ r}
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Pairwise CDF cont.

Ĥ(r) = fraction of values of dij < r

=
1

n(n − 1)

n∑
i=1

n∑
j=1

1{dij ≤ r}
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Empirical K-function

Ĥ(r) is valuable, but is absolute, so it can’t be compared between

processes with different numbers of points (e.g., clustering of crimes in

Kelowna vs. Vancouver, trees in two different forests, etc.).

Because the average number of points expected in any radius r is a

function of the intensity λ, we can derive a correction for Ĥ(r) that

allows for comparisons between processes (derivations in section 7.3 of

Baddeley et al. (2015)):

K̂ (r) =
|W |

n(n − 1)

n∑
i=1

n∑
j=1

1{dij ≤ r}eij(r)

where |W | is the observation window,

eij(r) is an edge correction,

and K̂ (r) is the estimated empirical K -function.
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Edge corrections

Because our observations are

restricted to a window, estimates

become biased near the edges.

Two common edge corrections include:

1. Border correction: Only use points > r away from border.

Computationally fast, but statistically inefficient (only recommended

for large datasets).

2. Isotropic correction: Corrects K̂ (r) based on how much of the

circle lies outside of the window. Computationally slower, and

statistically efficient (but assumes isotropy).
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Empirical K-function cont.

The K -function describes the cumulative

average number of points falling within

distance r of a typical point.

This value is corrected for edge effects.

For our three point processes, the empirical

K-functions would look like this:

The patterns are clearly different, but what does this mean for our point

processes?
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Theoretical K-function

For a homogeneous Poisson point process it can be shown that the

expected K -function is given simply by (derivations in section 7.3 of

Baddeley et al. (2015)):

K (r) = πr2

In other words, it is simply a function of the area of a circle with radius r .

Any deviations between the empirical and theoretical K -functions are an

indication of correlations (+ive or -ive).
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Theoretical K-function cont.

Any deviations between the empirical and theoretical K -functions are an

indication of correlations... but what constitutes a meaningful deviation?
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Theoretical K-function cont.

We can generate bootstrapped estimates of K̂ (r) to obtain confidence

intervals (details in section 7.8 of Baddeley et al. (2015)).
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The K-function overview

Ripley’s K -function is a widely used and well respected metric for

understanding patterns in spatial correlations.

It describes correlations, not causations (provides no insight on why a

perceived correlation may exist).

Tests rely on assumptions of homogeneity, stationarity, and that the

process is Poisson (breaking those can produce spurious findings).

Plots of K̂ (r) vs r do not provide information on the spatial scale of

interactions (often incorrectly used to this end).
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Pair Correlation Function



Motivation

Ripley’s K -function provides information on whether their are significant

deviations from independence between points, but provides limited

information on the behaviour of the process (cumulative in nature so

contains the contribution of all inter-point distances ≤ r).

An alternative tool is the pair correlation function g(r), which only

contains contributions from inter-point distances = r

g(r) =
K (r)′
2πr

i.e., the derivative of the K -function with respect to r .

Analogous metrics have arisen independently in other fields of research

(e.g., the radial distribution function from physics/chemistry).
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Pair correlation function

K (r) counts all points within a circle

of radius r .

g(r) counts all points within a ring

of radii r & r + h.

Under CSR, g(r) has an expected value of 1, values < 1 indicate fewer

points with separation distance r than expected (i.e., avoidance), and

vice versa for g(r) > 1.
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Empirical PCF

The estimated pair correlation functions for our three case processes

would look like this:
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Second Moment Statistics in R



Finnish Pine Dataset

To demonstrate how to apply these tools to real data we will work with

the Finnish Pine dataset again.

Do we think the trees are clustered? avoiding each other? independent?

Source: spatstat package
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Start with the first moment

All analyses should start with the first moment (can’t estimate the

second moment well if the first isn’t understood).

#Load in the data

data("finpines")

#Estimate the intensity

lambda_hat <- density(finpines)

#Visualise the first moment

plot(lambda_hat)

points(finpines)
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Morisita’s index

Next we can apply Morisita’s index using the miplot() function.

miplot(finpines ,

ylim = c(0,3),

main = "",

pch = 16,

col = "#046 C9A")

This suggests spatial clustering, but the data appear inhomogeneous, so

this might not be trustworthy.
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K -function

The K -function can be estimated using the Kest() function.

#Estimate the k-function

k_finpines <- Kest(finpines)

#visualise the results

plot(k_finpines ,

main = "",

lwd = 2)

Here again the results suggest clustering... but some confidence intervals

would help...
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K -function cont.

Bootstrapped confidence intervals for the theoretical K -function can be

estimated using the envelope() function.

# Bootstrapped CIs

# rank = 1 means the max and min

# values will be used for CI

E_finpines <- envelope(finpines ,

Kest ,

rank = 1,

nsim = 19,

fix.n = T)

# visualise the results

plot(E_finpines ,

main = "")

Now we have evidence that suggests significant clustering, but these

estimates assume homogeneity.
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Inhomogeneous K -function

We can correct for inhomogeneity by weighting the data based on λ(u)

(the Kinhom() function).

Homogeneous K -function Inhomogeneous K -function

When correcting for inhomogeneity, the clustering is not as strong...
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g-function

The g -function can be estimated using the pcf() function.

# Estimate the g function

pcf_finpines <- pcf(finpines)

# visualise the results

plot(pcf_finpines ,

theo ~ r,

ylim = c(0,25),

main = "",

col = "grey70",

lty = "dashed")

plot(pcf_finpines ,

iso ~ r,

col = c("#046 C9A"),

add = T)

Seems like clustering occurs for ca. 0.75 meters.
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Inhomogeneous g-function

We can also correct for inhomogeneity by weighting the data based on

λ(u) (the pcfinhom() function).

Homogeneous g-function Inhomogeneous g-function

Again, when correcting for inhom., the clustering is not as strong...
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Conclusion

All lines of evidence point towards

clustering and non-independence in

Finnish pines.
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Second moment considerations

The corrections for inhomogeneity all assume the intensity is unbiased.

There are many different corrections for edge effects and anisotropy, and

different bootstrapping approaches (also all described in Baddeley et al.

(2015))

Lots of additional information on the spacing between points can be

obtained via metrics that we won’t be covering (see chapter 8 of

Baddeley et al. (2015) if you’re interested).
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Take home messages

The formal analysis of a point process usually begins with a descriptive

analysis of the first moment.

Second moment descriptive statistics can help us further understand the

factors at play in a point process (clustering, avoidance, etc...), but these

metrics are correlative in nature and do not provide us with information

on the underlying cause (e.g., we saw that Finnish pines were clustered,

but we weren’t able to say anything about why this was the case).

Descriptive statistics are a great place to start when analysing point data,

but to fully understand our system we need to be able to model it, which

we will cover next lecture.
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