
Point Processes 3: Poisson Models

Michael Noonan

DATA 589: Spatial Statistics



Table of contents

1. Review

2. Applied Points Pattern Analysis

3. Motivation

4. Defining the Point Process

5. The Poisson Point Process

6. Fitting Poisson models in R

DATA 589: Spatial Statistics 2



Review



Review

Last lecture we saw how second moment descriptive statistics (Morisita’s

index, Ripley’s K -function, the g -function) can help us further

understand whether there are any correlations between points in a point

process (clustering, avoidance, etc...).

These metrics are informative additions to first moment measures, but

are correlative in nature and do not provide us with information on the

underlying cause.

I mentioned that descriptive statistics are a great place to start, but that

to fully understand a point process we need to be able to model it.

Today we will focus on how to formally model point processes using

‘Poisson point process’ models.
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Applied Points Pattern Analysis



Data driven pathology

Jones-Todd et al. (2019) used machine learning and point pattern

analyses to characterise the spatial distribution tumor cells in cancer

patients.

Different spatial patterns could then be used to inform treatment options.
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Motivation



Describing point processes

We have been covering methods for

describing the spatial arrangement

of points.

E.g., Are the points uniform? Does

the intensity depend on a covariate?

Are they clustered? and so on...

In asking these questions were are

not really interested in the points

per se, but in the process that

generated the points.
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Describing point processes cont.

Describing a collection of points

within a window can provide

valuable insight, but the findings are

not generalisable (i.e., don’t extend

beyond the sampling window).

In order to be able to make general

statements about how we expect

points to be arranged, we need to

model our system.

... and in order to model our system

we need a formal framework for

what these models should look like.
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Defining the Point Process



Point processes definitions

A point process, X, is a random mechanism whose outcome is a point

pattern.

A point pattern is a set x = {x1, x2, ...} of points in a two-dimensional

space, which has a finite number of points in any bounded region B (i.e.,

n(x ∩ B) is finite).

For any bounded region B, the number of points n(x ∩ B) is a

well-defined random variable.
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Point processes derivation

We begin by considering a process that results in Complete Spatial

Randomness (CSR).

CSR implies:

1. homogeneity (points have no preference for any particular

location), and

2. independence (knowing something about the number of points in

one region of space provides no information on the number of points

in other regions).
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Homogeneity

Under an assumption of homogeneity, the expected number of points

falling in any region B is proportional to its area |B|:

En(x ∩ B) = λ|B|
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Independence

Under an assumption of independence, n(x∩A) provides no information

on n(x ∩ B), which implies that the number of points falling in test

regions are independent random variables.
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Independence cont.

The property of independence holds for regions of any shape and/or

size... so taking finer and finer subdivisions results in more and more

independent random variables.
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Independence cont.
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Describing point processes cont.

When the size of the squares is

extremely small, most will be empty

and there is a negligible probability

that a square will have >1 point.

This implies that n(X ∩ B) is the

number of successes in a large

number of independent trials, which

implies that n(X ∩ B) follows a

Poisson distribution.

Because En(x ∩ B) = λ|B|, this

means that n(X ∩ B) is a Poisson

distributed random variable with

mean λ|B|.
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Poisson random variable

I just said that n(X ∩ B) is a Poisson distributed random variable with

mean λ|B|, but maybe you’re not convinced?

#Visualise a homogeneous point process

plot(ppp_example)

#Quadrat counting estimate of intensity

Q16by16 <- quadratcount(ppp_example ,

nx = 16,

ny = 16)

plot(ppp_example)

plot(Q16by16 , add = T)
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Poisson random variable cont.

#Estimated intensity from quadrat counts

lambda_u <- mean(Q16by16)

lambda_u

[1] 1.5625

#Generate Poisson dist. vals. around lambda_u

R_Poisson <- rpois(n = 16^2,

lambda = mean(Q16by16))

#Visualise a histogram of the quadrat counts

hist(Q16by16)

#Visualise a histogram of the Poisson values

hist(R_Poisson)
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The Poisson Point Process



Poisson point processes

We now see that CSR implies:

1. Homogeneity: (points have no preference for any particular

location).

2. Independence: (knowing something about the number of points in

one region of space provides no information on the number of points

in other regions).

3. Poisson distribution: n(X ∩ B) follows a Poisson distribution.
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Poisson point processes cont.

We are therefore dealing with a Poisson point processes that is described

by an intensity function λ(u)

...which implies we need to build a statistical model that estimates λ(u)

(i.e., λ(u) = some function of u).
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Inhomogeneous Poisson point processes

If a point processes is homogeneous, λ(u) is constant in space and

defined by a ‘baseline’ intensity function.

λ(u) = α

where α is an unknown baseline intensity that must be estimated.

If a point is processes is inhomogeneous, λ(u) is not constant in space

but rather a function of some covariate(s)

λ(u) = α + βZ (u)

where α is the baseline intensity, Z (u) is our spatial covariate, and β is

our unknown covariate effect that must be estimated.
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Inhomogeneous ppp cont.

λ(u) = α + βZ (u)

defines an inhomogeneous point processes where λ(u) is a function of

some covariate(s)... but depending on the values of α and β, it is

conceivably possible to obtain negative values for λ(u), which is

impossible.

As a fix, we add a log-link function and exponentiate our model

λ(u) = eα+β1Z1(u)+β2Z2(u)...+βiZi (u)

Does this look familiar? (functionally similar to a Poisson GLM)
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Inhomogeneous ppp cont.

Modelling an inhomogeneous Poisson point processes therefore means

specifying the form of the model e.g.,

λ(u) = eα+β1Z1(u)+β2Z2(u)...+βiZi (u)

...and estimating the unknown coefficients that best described the

observed point pattern dataset

...and because we know what distribution λ(u) should follow, we can

approximate the likelihood function and estimate the parameters via

some optimisation process (Ch. 9 in Baddeley et al. (2015) if you’re

interested).
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Fitting Poisson models in R



Beilschmiedia pendula dataset

To demonstrate how to fit Poisson point processes to real data we will

work with the Beilschmiedia pendula dataset.

Do we think the trees are homogeneous? Related to covariates?

Source: spatstat package
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Start with the first moment

All analyses should start with describing the first moment. Do we think

this point processes is homogeneous?

#Load in the data

data("bei")

#Estimate the intensity

lambda_hat <- density(bei)

#Visualise the first moment

plot(lambda_hat)

points(bei)
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Homogeneous?

#Estimated intensity from quadrat counts

lambda_u <- mean(Qcount)

lambda_u

[1] 7.039062

#Generate Poisson dist. vals. around lambda_u

R_Poisson <- rpois(n = length(Qcount),

lambda = lambda_u)

#Visualise a histogram of the quadrat counts

hist(Q16by16)

#Visualise a histogram of the Poisson values

hist(R_Poisson)
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Inhomogeneous PPP

These data are clearly inhomogeneous, and a visual inspection suggests

this may be related to an elevational preference.

This suggests we fit a model of the form λ(u) = eα+βElevation×Elevation(u)

Source: spatstat package
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Fitting the PPP

Fitting a PPP in R involves using the spatstat::ppm() function.

Model is of the form ppm(X ∼ trend, ...), where X is a point process

and trend are our covariates (note: these are different objects in R env.).

#Fit the PPP model

fit <- ppm(bei ~ elev , data = bei.extra)

---- Intensity: ----

Log intensity: ~elev

Model depends on external covariate elev

Covariates provided:

elev: im

grad: im

Fitted trend coefficients:

(Intercept) elev

-5.63919077 0.00488995

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Intercept) -5.63919077 0.304565582 -6.2361283457 -5.042253203 *** -18.515522

elev 0.00488995 0.002102236 0.0007696438 0.009010256 * 2.326071

So our fitted model is λ(u) = e−5.64+0.0049×Elevation(u)
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Non-linearity?

...but if we remember from our

lecture on intensity, it looked like

the relationship with elevation was

probably non-linear

...which means our linear model is

probably inaccurate and will

over-predict at high elevations.
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PPP with multiple terms

The relationship looks quadratic, so we can just add a quadratic term to

the model.

#Fit the PPP model

fit_quad <- ppm(bei ~ elev + I(elev ^2), data = bei.extra)

---- Intensity: ----

Log intensity: ~elev + I(elev ^2)

Model depends on external covariate elev

Covariates provided:

elev: im

grad: im

Fitted trend coefficients:

(Intercept) elev I(elev ^2)

-1.379706e+02 1.847007e+00 -6.396003e-03

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Intercept) -1.379706e+02 6.7047209780 -1.511116e+02 -124.8295944 *** -20.57813

elev 1.847007e+00 0.0927883208 1.665145e+00 2.0288686 *** 19.90560

I(elev ^2) -6.396003e-03 0.0003207726 -7.024705e-03 -0.0057673 *** -19.93937

And our new fitted model is of the form:

λ(u) = e−138+1.85×Elevation(u)−0.0064×Elevation(u)2
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PPP with multiple terms

On the surface, the more complex model makes sense given the observed

patterns, but how do we know whether the additional complexity is

supported by the data (i.e., are we overfitting?).

PPPs are amenable to standard model selection criteria (e.g., AIC or

likelihood ratio tests).

We will only explore LRTs, but the selection process for PPP models is

functionally identical to what you have seen for other models (e.g.,

GLMs).
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Likelihood-Ratio Test

The likelihood-ratio test compares a pair of nested models based on the

ratio of their likelihoods.

λLR = −2 ln
[
L(Reduced model)
L(Full model)

]

The likelihood-ratio test statistic is often expressed as a difference

between the log-likelihoods

λLR = −2(ln[L(Reduced)]− ln[L(Full)])
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The test statistic

So how does being able to quantify λLR help us identify the best model

structure?

According to Wilks’ theorem, as the sample size n approaches ∞, the

test statistic λLR will be chi-squared distributed with degrees of freedom

equal to difference in the number of parameters between the two models.

This implies that we can compare λLR to the χ2 value corresponding to a

desired statistical significance threshold (usually α = 0.05) as an

approximate statistical test.
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LRT on PPP models

Nested PPP models are amenable to likelihood ratio tests.

#Conduct a likelihood ratio test on the quadratic term

anova(fit , fit_quad , test = "LR")

Analysis of Deviance Table

Model 1: ~elev Poisson

Model 2: ~elev + I(elev ^2) Poisson

Npar Df Deviance Pr(>Chi)

1 2

2 3 1 536.05 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The p-value is tiny, so we reject the simple model in favour of the more

complex quadratic form.
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Model visualisation

Seeing the summary output is useful, but perhaps not the easiest way to

interpret the fitted model...

Visualisations help!

#Plot the elevation effect

plot(effectfun(fit_quad , "elev", se.fit = T))

#Plot the model predictions

plot(fit_quad)

DATA 589: Spatial Statistics 41



Take home messages

We saw that for a homogeneous point process, the number of points

falling in any region can be treated as Poisson distributed random

variable.

This property allowed us to define a formal framework for modelling

point processes, which in turn allows us to make general inference about

our study system, and also make predictions from our fitted models.

We also saw that we can visualise fitted models and perform model

selection to identify the best fit model for the data at hand.

...but (and importantly!) we didn’t cover methods for validating our

model, which we will focus on next lecture.
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