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Review



Review

Last lecture we saw that, for a homogeneous point process, the number

of points falling in any region can be treated as Poisson distributed

random variable.

This property allowed us to go beyond descriptives and define a formal

framework for modelling point processes, which in turn allows us to make

general inference about our study system, and also make predictions.

We also saw that we can visualise fitted models and perform model

selection to identify the best fit model for the data at hand... but we

didn’t cover methods for validating our models.

Today we will focus on tools for validating PPP models, and we will

finish with some general guidance on where to go from here.
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Applied Points Pattern Analysis



Electronics industry cohesion

Sweeney & Gómez-Antonio (2016) used a Gibbs point process to model

the first (intensity) and second (correlation) moments of the electronics

manufacturing industry in Madrid.
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Electronics industry cohesion

Road networks and public transport were important drivers of

manufacturer locations, but electronics manufacturers showed strong

cohesion after accounting for the first moment effects.
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Motivation



Beilschmiedia pendula dataset

Last lecture we were fitting a Poisson point processes to data on the

locations of Beilschmiedia pendula.

We finished with the model λ̂(u) = e−138+1.85×elev(u)−0.0064×elev(u)2

Source: spatstat package
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Beilschmiedia pendula dataset cont.

We saw that a LRT favoured a quadratic relationship with elevation over

a linear relationship.

Model selection can tell us which models from a pool of candidates have

the best support given our observations, but it doesn’t tell us anything

about how well our model does at predicting the occurrence of B.

pendula.
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Model validation

When we fit a model to some data we are always assuming that the

model has been correctly specified.

When we use software to fit a model

to some data it will always estimate

some coefficients even if the model

is a poor fit to the data.

The same is true for point processes,

but because we are working in

multiple dimensions it becomes

challenging to diagnose our models.

e.g., statistically these figs. are identical (fit vs. obs.), but are they equally

interpretable?
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Quadrat Counting Tests



Quadrat counting

Earlier in the course we saw how quadrat counting could be used as a

test a set of observed points for deviations from homogeneity (or CSR),

but the concept can be generalised to an inhomogeneous point process.

After fitting a model, we are saying that the intensity at any location u is

λθ(u), where θ are the values of our parameters.

Under a null hypothesis that the intensity is λθ(u), then the expected

number of points falling in each quadrats, Bj , is µj , where

µ̂j =

∫
Bj

λθ̂(u)du
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Quadrat counting cont.

We can therefore test for significant deviations from λθ(u) using a χ2 test

χ2 = Σj
(observed− expected)2

expected
= Σj

(nj − µ̂j)
2

µ̂j
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Test of λθ(u) in R

As before, this test can be performed using the quadrat.test()

function from the spatstat package.

#Fit a model with a quadratic effect for elevation

fit_quad <- ppm(bei ~ elev + I(elev ^2),

data = bei.extra)

#Run the quadrat test

quadrat.test(fit_quad , nx = 4, ny = 2)

Chi -squared test of fitted Poisson model fit _ q u a d

using quadrat counts

data: data from fit_quad

X2 = 482.6, df = 5, p-value < 2.2e-16

alternative hypothesis: two.sided

Quadrats: 4 by 2 grid of tiles

...which suggests that there’s a significant deviation from our model’s

predictions.
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χ2 test

Top left = observed, top right = expected, bottom = Pearson residuals

Pearson residual =
observed− expected√

expected
=

nj − µ̂j√
µ̂j

Pearson residuals have a µ of 0 and σ of 1, so anything > 2 is unusual.
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χ2 test cont.
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χ2 test of fit caveats

This test can tell us if there are significant deviations from the

predictions made by λθ(u) and the observed point data, but the p-value

doesn’t provide any information on the cause of the deviations.

Significant deviations from λθ(u) can be due to missing parameters,

model mispecification (e.g., polynomial vs. linear), a lack of

independence, non-stationarity, etc... (i.e., tells us if we have a problem,

but provides no information on how to fix it).

As before, the result is sensitive to the size of the quadrats.
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Poisson Point Process Residuals



Model Residuals

A model isn’t always a perfect representation of what’s going on in the

real world, and there will be deviations between what actually happened

(i.e., the observed values), and what the model predicted would happen

(i.e., the predicted values).

The difference between the predicted and observed value is called the

residual:

Residual = Observed – Predicted

Because residuals are supposed to have very specific behaviour (e.g.,

N (0, σ2) for linear regression), they’re a useful tool for evaluating models.
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Poisson point processes residuals

For a point process with parameters θ, our predictions are the estimated

intensity function λθ(u), and our observations are points, how can we

subtract these from each other?

A point process residual is the observed number of points falling in any

region B, n(x ∩ B), minus the expected number of points,
∫
B
λθ̂(u)du :

Residual = Observed− Predicted

R(B) = n(x ∩ B)−
∫
B

λθ̂(u)du

Similar to the quadrat count residuals we just saw, but defined for any

‘region’ B.
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PPP residuals

The residuals of a PPP model are calculated using the

spatstat::residuals() function.

#Calculate the residuals

res <- residuals(fit_quad)

plot(res)
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PPP residuals cont.

Comparing the model predictions to the residuals provides information on

where the model is well/poorly-behaved.

Cause is still unknown, but there is a clear spatial pattern, which suggests

an unmodelled spatial covariate.

Predictions Residuals
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PPP residuals cont.

This dataset also has information the gradient (slope). Thoughts?

Predictions

Residuals
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Lurking variable plot

Visual inspection suggests that gradient may play an important role in

governing the spatial distribution of B. pendula.

To get a better feeling of whether it’s worth considering an additional

covariate we can use ‘lurking variable’ plots.

Lurking variable plot: For each possible covariate value we sum the

residuals and visualise the results. Should be ∼ 0 if the covariate is

unrelated to trends in the residuals.

#Lurking variable plot

lurking(fit_quad ,

bei.extra$grad ,
type = "raw",

cumulative = F,

envelope = T,

xlab = "Gradient")
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Lurking variable plot cont.

The lurking variable plots suggests that B. pendula density is

over-estimated at low gradients (negative residuals on average), and

over-estimated at intermediate gradients (positive residuals on average).
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PPP with multiple covariates

It looks like gradient is important, so we can try adding a gradient term

to the model.

#Fit the PPP model

fit_quad <- ppm(bei ~ elev + I(elev ^2) + grad , data = bei.extra)

---- Intensity: ----

Log intensity: ~elev + I(elev ^2) + grad

Model depends on external covariates elev and grad

Covariates provided:

elev: im

grad: im

Fitted trend coefficients:

(Intercept) elev I(elev ^2) grad

-1.411708e+02 1.869641e+00 -6.422991e-03 5.402510e+00

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Intercept) -1.411708e+02 6.9555996924 -154.80356045 -1.275381e+02 *** -20.29600

elev 1.869641e+00 0.0963620230 1.68077473 2.058507e+00 *** 19.40226

I(elev ^2) -6.422991e-03 0.0003334752 -0.00707659 -5.769392e-03 *** -19.26078

grad 5.402510e+00 0.2507537766 4.91104113 5.893978e+00 *** 21.54508

And our new fitted model is of the form:

λ(u) = e−141.2+1.87×Elevation(u)−0.0064×Elevation(u)2+5.4×Gradient(u)
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LRT on PPP models

The term is significant, but is the additional complexity warranted?

#Conduct a likelihood ratio test on the gradient term

anova(fit_quad , fit , test = "LRT")

Analysis of Deviance Table

Model 1: ~elev + I(elev ^2) Poisson

Model 2: ~elev + I(elev ^2) + grad Poisson

Npar Df Deviance Pr(>Chi)

1 3

2 4 1 419.24 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The p-value is tiny, so we reject the simple model in favour of the more

complex model that includes a gradient effect.
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Partial residual plot

Including information on both elevation and gradient improved our

model’s performance, but is the gradient effect linear, or non-linear?

To answer this question we can use the partial residuals (details in sec.

11.4.3 of Baddeley et al. (2015) if you’re interested).

Partial residual plot: shows the fitted effect of a covariate alongside the

observed effect.

#Calculate the partial Residuals

par_res <- parres(fit , "grad")

#Visualise

plot(par_res)

Suggests a non-linear

relationship.
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Refining the PPP model

Using the residuals as a diagnostic tool, we can refine our fitted model.

#Fit a model with a quadratic effects for

# both elevation and gradient

fit_quad_2 <- ppm(bei ~ elev + I(elev ^2) +

grad + I(grad ^2),

data = bei.extra)

anova(fit , fit_quad_2, test = "LRT")

Analysis of Deviance Table

Model 1: ~elev + I(elev ^2) + grad Poisson

Model 2: ~elev + I(elev ^2) + grad + I(grad ^2)

Poisson

Npar Df Deviance Pr(>Chi)

1 4

2 5 1 238.52 < 2.2e-16 ***

#Visualise

plot(parres(fit_quad_2, "grad"))

The fit looks better, but is still not

perfect (higher order polynomial?,

missing covariate?).

In practice, we would iterate through

this refinement process until we were

happy with our model.
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Coordinates as covariates

Normally (i.e., not spatially) when fitting regression models, there are

two main ways to improve our fit:

1. Increase the complexity of exiting covariates (e.g., GAMS or higher

order polynomials).

fit <- ppm(bei ~ elev + I(elev ^2) + I(elev ^3) + I(elev ^4), data = bei.extra)

2. Add new covariates.

fit <- ppm(bei ~ elev + grad , data = bei.extra)

We can always increase the complexity of a model, but we often have no

way of including additional covariates (can’t generate the missing data

post hoc).
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Coordinates as covariates cont.

With spatial data, we can include the Cartesian coordinates as covariates

A model predicting the distribution

of BC Parks might over-predict in

coastal and northern regions.

fit_coord <- ppm(parks_ppp ~ x + y,

data = DATA)
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Coordinates as covariates cont.

Using the Cartesian coordinates as covariates is very useful when there are

clear spatially varying trends in the data but no (or missing) covariates.

The process is unlikely to be responding to ‘x’ and ‘y’, so these are proxy

variables (should aim to replace them if possible).

Because they are proxies, they can include the effects of multiple factors,

so try not to overthink these terms (i.e., use them, but use them wisely).
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Validation take home messages

Model selection techniques can tell us if one model outperforms another,

but provide minimal information on the goodness of fit.

Model validation is a key step in any analysis. Because point process

residuals are functionally identical to linear regression residuals, they can

aid in the model validation process.

Model validation and refinement is an iterative process that is part science

(based on theory), part art (based on experience), the more models you

fit and diagnose, the better modeller you will be (not just PPPs!).

There are many additional diagnostic tools that we didn’t cover (see

chapters 10-11 in Baddeley et al. (2015) if you’re interested).
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Where to from here?



What we didn’t cover

The methods we covered will get you through most standard spatial point

pattern analyses, but there are a few things we didn’t cover in detail:

1. Modifying the quadrature scheme via the quadscheme() function

(section 9.8 in Baddeley et al., 2015);

2. Cox processes (i.e., doubly stochastic models);

3. Gibbs processes (i.e., first and second moment models).
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Cox point processes

The standard Poisson point process assumes there is some true and fixed

λ(u) value that we are estimating.

The Cox process generalises this by assuming that our local intensity is

itself a random variable Λ(u) (i.e., a stochastic process)

E[n(X ∪ B)] = E(Λ)|B|

Cox models allow for over-dispersion or clustering... but are difficult to fit.

Note: it’s impossible to distinguish a Cox point process from a Poisson

point process from only one realisation, and there are currently no model

validation tools for these models.
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Gibbs point processes

The standard Poisson point process assumes the intensity if only a

function of first moment effects on λ(u).

The Gibbs point process generalises this by explicitly defining interactions

between points (i.e., second moment effects).

λ(u|x) =

{
β if u is permissible

0 if u is not permissible

Gibbs models generally model avoidance or inhibition.

Fit via the interaction argument in ppm e.g., ppm(parks ∼ 1 +

Strauss(10))
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Additional considerations

If you are dealing with points on a

linear network, you will need a

completely different set of functions

(workflow is the same).

data("chicago")

lambda <- density(unmark(chicago), sigma= 60)

plot(lambda)

fit <- lppm(chicago ~ x + y)

...
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Additional considerations cont.

We have mostly been ignoring the marks, but they can be included as

covariates (exact workflow depends on structure of the marks and

analytical goals, see Ch 14 in Baddeley et al., 2015).

We have been working in two dimensions, but the methods extend to

three dimensions (see Ch 15 in Baddeley et al., 2015).

Tools for more complicated data structures (e.g., replicated data, spatial

time series) are still being developed.
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Take home messages

The methods we covered will get you through most standard spatial

point pattern analyses.

A typical workflow begins with data visualisation, and calculating first

and second moment descriptive statistics.

Once you have a good feeling of the properties of the data, building

models to describe the system will allow you to make generalisable

inference about the point process you’re modelling.

The rest of the course will focus on situations where the locations of our

data are arbitrary, but where the spatial context is still critical for

understanding our system.
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