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Overview



Overview

So far we have covered situations where locations were the

variables of interest, and we studied these data using point

processes

...but there are many situations where locations are arbitrary:

Lead in St. John’s

(Bell et al., 2010)

Rainfall in Europe

(Ballabio et al., 2017)

Soil Carbon in the UK

(Feeney et al., 2022)
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Overview

Lead in St. John’s

(Bell et al., 2010)

Rainfall in Europe

(Ballabio et al., 2017)

UK Soil Carbon

(Feeney et al., 2022)

These data can’t be treated as a point process because the

locations of the points are (mostly) meaningless

...but they also can’t be modelled using off the shelf techniques

because they break an important assumption; that the data are IID.
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Spatial Autocorrelation

Data are often collected by measuring quantities over space (e.g.,

abundances, concentrations, etc.).

When this is the case, spatial autocorrelation can arise when the

variation between the values of the datapoints is affected by their

spatial distance (i.e., data that are close together in space more

similar than data collected further apart).

The underlying reason for this is that many of the drivers (e.g.,

environmental conditions, topography, geology, etc.) act at large

spatial scales.

The result is that we can not assume that spatially collected data

are IID.
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Spatial Autocorrelation cont.

What if we’re studying the effect of rainfall on species diversity in

the Amazon?

Source: Tadashi Fukami and Jes Coyle

Because rainfall is correlated in space, species diversity will also be

correlated in space (if the relationship exists).
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Sources of autocorrelation

Anything that causes some data points to be more similar to each

other than others can result in autocorrelation.

• Time: Data that are close together

in time are more related.

• Space: Data that are close

together in space are more related.

We will be focusing on spatial autocorrelation, but the ideas

translate to other sources of autocorrelation.
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Autocorrelation is important

© Chris Sorensen

Dr. Sam Wang, Neuroscientist

—Princeton Election Consortium

“It is totally over. If Trump wins

I will eat a bug.”

© ABC News

Nate Silver, Statistician

—FiveThirtyEight.com

“Trump Is Just A Normal Polling

Error Behind Clinton.”
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© Chris Sorensen

© ABC News

Nate Silver, Statistician

—FiveThirtyEight.com

“Trump Is Just A Normal Polling
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Ignoring non-ind. → overconfidence

Are these polling errors

independently distributed?

This same statistical issue

that caused overly confident

predictions of Clinton’s 2016

victory can result in

overconfidence in parameter

estimates and predictions in

regression models.
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Autocorrelation impact

Sample size, n is the denominator when calculating SEs and CIs.

SE = σ√
n

95%CI = x̄ ± 1.96 σ√
n

All else equal: ↑ n =↓ SE & ↓ CI

But with autocorrelated data each new datapoint is related to a

previously collected datapoint and does not bring a full

independent datapoint worth of information (e.g., 90% autocorr.

≈ 10% new info).

When data are autocorrelated neffective < n, meaning SEs and CIs

shrink faster than they should, resulting in a false sense of

confidence.
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Autocorrelation contains information

Spatially referenced measurements contain valuable information

(e.g., soil organic carbon on a mountain in Mexico)

(Fusaro et al., 2019)

... but what if we want to know how much carbon is at a nearby,

un-sampled location?
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Autocorrelation contains information

Leveraging the information contained the spatial autocorrelation

between samples allows us to make predictions to unsampled areas

(Fusaro et al., 2019)
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Autocorrelation summary

Data that are collected across space will likely be autocorrelated,

breaking the IID assumption.

Ignoring this autocorrelation results in biased, over-confident

models, and (more importantly) does not leverage the full amount

of information contained in the data.

During the rest of this course we will focus on ways to visualise,

detect, and work with the autocorrelation contained in spatial data.
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Detecting Spatial Autocorrelation



Geostatistics

Scientists in many fields of research find themselves collecting data

repeatedly over space, but the tools originally come from the field

of geostatistics.

Can you think of data that are collected over space that might

drive statistical innovation? Data where the ability to predict

where things occur might be profitable?

Source: ArcMap

The tools for working with spatial

autocorrelation were developed for the

goal of mapping mineral deposits.
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The Russian Boreal Data

We’re going to work with a dataset on forest composition in

Tatarstan, Russia from Zuur et al. (2007).

The variable of interest is a measure of boreality (∼percent boreal

species at a site).
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Bubble plots

Spatial autocorrelation can be difficult to see in a simple x vs. y

scatterplot (not designed for this purpose).
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Bubble plots

‘Bubble plots’ are an easy tool to quickly assess for autocorrelation.

Values are plotted in space, and sizes/colours are proportional to

their values. The idea is to look for patterns.

Bubble plots are quick and easy to generate, but can be hard to

read and are not particularly formal.
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Moran’s I

Moran’s I is a correlation coefficient that measures the overall

spatial autocorrelation of a data set (think of it as ∼ weighted

covariance):

I = N
W

∑
i

∑
j wij (xi−x̄)(xj−x̄)∑

i (xi−x̄)2

N is the number of spatial units indexed by i and j ;

x is the variable of interest and x̄ is the mean of x ;

wij is a matrix of spatial weights and W is the sum of all wij .

Values of I usually range from -1 to +1.
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Moran’s I in R

Many R packages for calculating Moran’s I

library(ape)

library(fields)

#Vector of spatial coordinates

coords = cbind(data$x, data$y)

#Matrix of distances for the weights

w = fields :: rdist(coords)

#Calculate Moran ’s I

ape::Moran.I(data$Bor , w = w)

$observed
[1] -0.03019649

$expected
[1] -0.001879699

$sd
[1] 0.001368412

$p.value
[1] 3.991055e-95

The p-value tells us we

have significant spatial

autocorrelation.
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Moran’s I cont.

Moran’s I can be a useful tool for identifying the presence of

autocorrelation and is quite popular.

The challenge is how to act on this information (i.e., lets you know

if you have autocorrelation, but doesn’t help in modelling it)?
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Moran’s I cont.

Moran’s I is also very sensitive to how you define the weights:

“The idea is to construct a matrix that accurately reflects your

assumptions about the particular spatial phenomenon in question. A

common approach is to give a weight of 1 if two zones are neighbors, and

0 otherwise, though the definition of ‘neighbors’ can vary. Another

common approach might be to give a weight of 1 to k nearest neighbors,

0 otherwise. An alternative is to use a distance decay function for

assigning weights. Sometimes the length of a shared edge is used for

assigning different weights to neighbors. The selection of spatial weights

matrix should be guided by theory about the phenomenon in question.”

– Wikipedia
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Semi-variograms

Semi-variograms are functions describing the degree of spatial

dependence in a spatial stochastic process, Z (s).

Semi-variance, γ(h), is a measure of the degree of similarity

between pairs of points separated by distance h, given by

γ(h) = 1
2V

∫∫
V [f (M + h)− f (M)]2 dV ,

where M is a point in the spatial field V ,
f (M) is the value at point M (in arbitrary units);
h is the separation distance (in e.g., meters or km); and
the double integral is over 2 dimensions.
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Semi-variograms properties

• γ(h) ≥ 0, since it is the expectation of a square.

• Since Z (s1)− Z (s1) = 0, γ(0) is always 0.

• If the process is stationary, in the limit where h→∞
γs(h) = var(Z (s)).

• If a stationary process has no spatial dependence, the

semi-variogram is constant everywhere except at the origin,

where it is zero.

• The semi-variogram might be discontinuous at the origin (the

height of the jump at the origin is referred to as nugget).

For a discussion of these properties see Bachmaier & Backes (2011).
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Empirical semi-variograms

To obtain the semi-variogram for a given γ(h), all pairs of points

at that exact distance, h, would need to be sampled. In practice,

this is impossible, so the empirical semi-variogram is used instead.

For values of Z (s) for all pairs separated by distance h, γ(h) is

estimated as:

γ̂(h ± δ) :=
1

2|N(h ± δ)|
∑

(i ,j)∈N(h±δ)

|zi − zj |2

where δ is some bin width.
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Empirical semi-variograms cont.

γ̂(h ± δ) :=
1

2|N(h ± δ)|
∑

(i ,j)∈N(h±δ)

|zi − zj |2
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Empirical semi-variograms cont.
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1
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∑
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|zi − zj |2
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Empirical semi-variograms cont.
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Empirical semi-variograms cont.
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Empirical semi-variograms cont.
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Empirical semi-variograms cont.

γ̂(h ± δ) :=
1

2|N(h ± δ)|
∑

(i ,j)∈N(h±δ)

|zi − zj |2

DATA 589: Spatial Statistics 34



Reading a variogram

Plots of γ̂(h) vs. h are called a semi-variograms and facilitate the

visual assessment of autocorrelations in spatial data.
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Autocorr. in the boreality data in R

# Import the data

data <- read.csv("Datasets/Boreality.csv")

# Spatial data frame of boreality

DATA <- data.frame(Z_s = data$Bor ,
x = data$x,
y = data$y)

# Define coordinates

sp:: coordinates(DATA) <- c("x","y")

# object of class = "SpatialPointsDataFrame"

# Calculate empirical variogram

vg <- gstat:: variogram(Z_s ~ 1, data = DATA)

# object of class = "gstatVariogram"

plot(vg)
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Autocorr. in the boreality data in R
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Applied Variogram Analysis



Regional Econ. Resilience in the EU

Annoni et al. (2019) used a semi-variograms and Moaran’s I to

examine regional economic resilience in the EU, and to what extent

GDP is influenced by neighbours.
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Regional Econ. Resilience in the EU

Weighting GDP by Moran’s I showed how regions influenced each

other.
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Core a periphery GDP zones
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Take home messages

Autocorrelation contains a lot of information about a spatial

process.

There are many methods for visualising and working with spatially

correlated data (e.g., bubble plots, Moran’s I).

Semi-variograms are useful tools for visualising spatial

autocorrelation, are objective, and have a long, robust history.

Usefully, the shape of a dataset’s empirical variogram can also

provide clues on how to best model the autocorrelation in the

data, which we will cover next lecture.
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