
Spatial autocorrelation 2:

Kriging

Michael Noonan

DATA 589: Spatial Statistics



Table of contents

1. Review

2. Modelling Correlation Structures

3. Predicting from Spatial Autocorrelation Models

4. Considerations for Sampling Designs

5. Applied Kriging Analysis

DATA 589: Spatial Statistics 2



Review



Review

Lead in St. John’s

(Bell et al., 2010)

Rainfall in Europe

(Ballabio et al., 2017)

UK Soil Carbon

(Feeney et al., 2022)

Last lecture we started covering situations where the locations of

points were an arbitrary artefact of the sampling process and not

the variable of interest.

We also covered how autocorrelation contains a lot of information

about these spatial processes, but that working with them requires

a special set of tools.
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Review cont.

We covered some of these tools (e.g., bubble plots, Moran’s I), but

identified semi-variograms as being particularly useful, objective,

and as having a long, proven history.

γ̂(h ± δ) :=
1

2|N(h ± δ)|
∑

(i ,j)∈N(h±δ)

|zi − zj |2

I also told you that the shape of a dataset’s empirical

semi-variogram can provide clues on how to best model the

autocorrelation in the data.

Today we will focus on how to fit models to semi-variograms, how

to use these models to make predictions, and the implications for

study design.
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Modelling Correlation Structures



Reading variograms

Semi-variogram have a number of key features that we should be

looking for (sill? range? nugget? shape?).

Rainfall in Switzerland

Source: gstat package
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Reading variograms cont.

Fulmaris glacialis densities

Source: gstat package
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Reading variograms cont.

Soil copper concentrations

Source: gstat package
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Reading variograms cont.

Semi-variograms have a number of key features that we should be

looking for (i.e., sill, range, nugget, shape).

So what?

Usefully, the different spatial correlation models all have differently

shaped theoretical variograms.
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Corr. models and their variograms

Exponential Φ = 1 − e
− D

ρ

Spherical Φ = 1(1 − 1.5( d
ρ

) + 0.5( d
ρ

)3)I (d < ρ)

Gaussian Φ = 1 − e
−( D

ρ
)2

Linear Φ = 1 − (1 D
ρ

)I (d < ρ)
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Fitting correlation models

The different correlation models are fit to the semi-variogram,

usually (but not necessarily) via Ordinary Least Squares, and the

best fit to the data is identified.

DATA 589: Spatial Statistics 16



Fitting correlation models in R

We’re going to work with the dataset on forest composition in

Tatarstan, Russia again.

The variable of interest is a measure of boreality (∼percent boreal

species at a site).
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Linear spatial correlation in R

A linear spatial correlation structure can be applied via the

fit.variogram() function with the argument vgm("Lin").

#Data import and wrangling

data <- read.csv("Datasets/Boreality.csv")

sp:: coordinates(data) <- c("x","y")

# Empirical variogram

vg <- gstat:: variogram(Bor ~ 1, data = data)

#Fit linear correlation model

fit.linear <- fit.variogram(vg, vgm("Lin"))

Linear Φ = 1 − (1 D
ρ

)I (d < ρ)

fit.linear

model psill range

1 Nug 7.649557 0.000

2 Lin 11.954061 1066.725
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Other spatial correlations in R

#Fit spherical correlation model

fit.linear <- fit.variogram(vg, vgm("Sph"))

fit.spherical

model psill range

1 Nug 7.539269 0.000

2 Sph 12.948714 1627.959

#Fit Gaussian correlation model

fit.Gaussian <- fit.variogram(vg, vgm("Gau"))

fit.Gaussian

model psill range

1 Nug 8.566378 0.000

2 Gau 10.563320 611.773
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Other spatial correlations in R cont.

#Fit exponential correlation model

fit.exponential <- fit.variogram(vg , vgm("Exp"))

fit.exponential

model psill range

1 Nug 6.783153 0.0000

2 Exp 15.545091 850.8605

#Fit nugget only model

fit.nugget <- fit.variogram(vg, vgm("Nug"))

fit.nugget

model psill range

1 Nug 11.68799 0
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Selecting the best structure

We just fit 5 different autocorrelation models, but how do we know

which is the best fit to the data?

# Extract sum of squared errors

results <- data.frame(model = c("spherical", "linear", "Gaussian",

"exponential", "nugget"),

SSErr = c(attr(fit.spherical , "SSErr"),

attr(fit.linear , "SSErr"),

attr(fit.Gaussian , "SSErr"),

attr(fit.exponential , "SSErr"),

attr(fit.nugget , "SSErr")))

#Ordered by lowest to highest SSErr

results <- results[order(results$SSErr),]

model SSErr

1 spherical 0.06565859

4 exponential 0.06942162

2 linear 0.10490507

3 Gaussian 0.14084834

5 nugget 2.95142242
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Selected model

What does the selected model tell us about our data?

fit.spherical

model psill range

1 Nug 7.539269 0.000

2 Sph 12.948714 1627.959

Correlations persist for ∼1.6 km.

When h→∞ γs(h) = var(Z (s))

fit.spherical$psill [2] + fit.spherical$
psill [1]

[1] 20.48798

var(data$Bor)
[1] 17.76566

Variance is slightly different

(non-stationarity?

small-sample-size-bias?

model-misspecification?).
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Selected model cont.

Residuals can be manually calculated.

#Get fitted values

fitted <- variogramLine(fit.spherical ,

maxdist=max(vg$dist),
dist_vector=vg$dist)

#Calculate residuals

residuals <- fitted$gamma - vg$gamma

#Visualise the residuals

plot(residuals ~ fitted$gamma)

How do these look? What should they look like?
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Selected model cont.

Density plot of residuals around the sill can be informative.

SILL <- residuals[which(fitted$gamma == max(fitted$gamma))]

plot(density(SILL))
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Overview of correlation structures

We fit several spatial autocorrelation models:

Type Description gstat Function

Nugget 0 vgm("Nug")

Linear Φ = 1− (1D
ρ )I (d < ρ) vgm("Lin")

Spherical Φ = 1(1− 1.5( d
ρ ) + 0.5( d

ρ )3)I (d < ρ) vgm("Sph")

Gaussian Φ = 1− e−( D
ρ )2

vgm("Gaus")

Exponential Φ = 1− e−
D
ρ vgm("Exp")

The model structures can be difficult to interpret, but their variograms

have very recognizable features. Familiarising yourself with them will help

you quickly narrow down what structure to use.

DATA 589: Spatial Statistics 25



Some considerations

...but there are a lot of different candidate models to choose from.

gstat::vgm()

short long

1 Nug Nug (nugget)

2 Exp Exp (exponential)

3 Sph Sph (spherical)

4 Gau Gau (gaussian)

5 Exc Exclass (Exponential class/stable)

6 Mat Mat (Matern)

7 Ste Mat (Matern , M. Steins parameterization)

8 Cir Cir (circular)

9 Lin Lin (linear)

10 Bes Bes (bessel)

11 Pen Pen (pentaspherical)

12 Per Per (periodic)

13 Wav Wav (wave)

14 Hol Hol (hole)

15 Log Log (logarithmic)

16 Pow Pow (power)

17 Spl Spl (spline)

18 Leg Leg (Legendre)

19 Err Err (Measurement error)

20 Int Int (Intercept)
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Predicting from Spatial

Autocorrelation Models



Spatial predictions

The form of the correlation model and parameter values are

valuable in-and-of-themselves, but fitting these models is usually

an intermediate step.

Typically, the goal of modelling these data is to predict to

unsampled areas and map out the response variable.

There are many tools for interpolating spatial data, but we will

focus on one of them: Kriging (based Danie Krige’s MSc thesis).

There are also many forms of Kriging (ordinary, simple, universal,

Bayesian, etc...), but we will focus (mostly) on ordinary Kriging.
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Ordinary Kriging

In ordinary Kriging, Ẑ (x0) is assumed to be random variable

located at an unobserved location x0, with a constant, unknown

mean (Matheron, 1963).

Ẑ (x0) is estimated from a linear combination of the observed

values zi and weights wi :

Ẑ (x0) =
[
w1 w2 · · · wN

]

z1

z2
...

zN

 =
∑N

i=1 wi (x0)Z (xi )

The weights are critical, and intended to reflect the proximity of

samples to the estimation location x0.
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Ordinary Kriging cont.

We’re trying to predict Ẑ (x0) using the known values Z (xi ), and

their spatial dependences.

The fitted semi-variogram model

describes the spatial dependence

of the samples.

We can use this to calculate the

covariance matrix (diagonal = σ2

= sill, off-diagonals = γ̂(h))

and from that the weights

(with
∑N

i=1 wi = 1).
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Ordinary Kriging in R

We’re trying to predict Ẑ (x0) using Z (xi ), and γ̂(h).

# Location to predict at

x_0 <- data.frame(x = 4000,

y = 2000)

sp:: coordinates(x_0) <- c("x","y")

# Kriged estimate

gstat::krige(Bor ~ 1,

data ,

model=fit.spherical ,

newdata = x_0)

[using ordinary kriging]

coordinates var1.pred var1.var

1 (4000, 2000) 12.31154 21.43853

DATA 589: Spatial Statistics 31



Ordinary Kriging in R cont.

Usually we want to predict over a large spatial area.

# Grid over the sampled area

grid <- makegrid(data , n=200000)

names(grid) <- c("x", "y")

sp:: coordinates(grid) <- c("x","y")

boreality.kriged <- krige(Bor ~ 1,

data ,

newdata = grid ,

model=fit.spherical)

head(boreality.kriged)

coordinates var1.pred var1.var

1 (-2.89, 4.93) 12.21230 21.33647

2 (6.71 , 4.93) 12.20009 21.32484

3 (16.31 , 4.93) 12.18724 21.31255

4 (25.91 , 4.93) 12.17376 21.29957

5 (35.51 , 4.93) 12.15965 21.28588

6 (45.11 , 4.93) 12.14492 21.27143
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Kriged boreality map
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Kriged boreality map
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Kriged boreality variance map

We also get an estimate of the variance at x0. Do these patterns

make sense?
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Kriged boreality variance map

Variance is lowest where we have data (σ2
x0

= nugget), and

increases the further away from the samples we move.
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Technical considerations

Kriging is a spatial interpolation method, so what happens if we

try to extrapolate?

How far out can we reasonably predict?
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Technical considerations

The Kriging weights (and therefore the predictions) are very

sensitive to the fitted semi-variogram.

It’s important to ensure the model is correctly specified.
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Technical considerations cont.

Est. the weights requires a matrix inversion (doesn’t scale well).

# predict at 100 locations

grid100 <- makegrid(data , n=100)

sp:: coordinates(grid1) <- c("x1","x2")

system.time(

krige(Bor ~ 1,

data ,

newdata = grid100 ,

model=fit.spherical))

[using ordinary kriging]

user system elapsed

0.049 0.001 0.050

# predict at 10000 locations

grid10000 <- makegrid(data , n=10000)

sp:: coordinates(grid10000) <- c("x1","x2")

system.time(

krige(Bor ~ 1,

data ,

newdata = grid10000 ,

model=fit.spherical))

[using ordinary kriging]

user system elapsed

2.066 0.024 2.096

4,000 times longer!
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Considerations for Sampling Designs



Spatially Autocorrelated Data

Experimental designs that do not

consider spatial autocorrelation risk

being over/under-sampled.

Corrections exist to deal with issues of

statistical bias, but they can’t inject

more information into a dataset when

none exists.

Good study design should consider spatial autocorrelation a priori.

If you had to collect more data for the boreality study how far

apart would you sample? . 1600m to see the autocorrelation,

& 1600m for IID data or for the mean/sill.
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Applied Kriging Analysis



Mapping plastic pollution

Coleby & Grist (2019) used a semi-variograms and kriging to map

the distribution of marine plastic pollution in Hong Kong.

DATA 589: Spatial Statistics 45



Take home messages

Fitting semi-variograms to spatial data can leverage the

information contained in the autocorrelation structure and tell us a

lot about the processes.

Kriging is a valuable tool for interpolating from spatially referenced

data, but is not without limitations.

Kriging leverages information contained in the autocorrelation

structure, but what about information contained in covariates?

Next lecture we will cover Kriging with covariates.
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