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Review



Review

Last lecture we learned how to fit semi-variograms to spatial data,

and leverage the information contained in autocorrelation

structures to learn about processes.

We also saw how Kriging can use the information contained in

these models to interpolate spatially referenced data, but that it is

sensitive to model specification, spatially constrained, and slow.

Ordinary Kriging leverages information contained in the

autocorrelation structure to make predictions, but doesn’t use any

information from covariates.

Today we will cover a suite of tools for making predictions with

covariates (i.e., co-Kriging, regression Kriging, and regression with

autocorrelated errors).
DATA 589: Spatial Statistics 4



Co-Kriging



Motivation

When Kriging, we are trying to predict the values of some target

variable, but we could have just measured the variable everywhere

we wanted to predict.

In reality, this is rarely possible because its costly and time

consuming to collect the data, which means we have typically have

few observations.

... but if there is another variable that is cheaper/easier to

measure, and covaries with our target variable, then we can collect

more observations and leverage their information to improve our

estimates.
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Co-Kriging

Co-Kriging is an extension of ordinary Kriging in which additional

observed variables are used to improve the interpolation of the

variable of interest.

Co-Kriging does not require that the secondary information is

available at all prediction locations.

The co-variable may be measured at the same points as the target

(co-located samples), at other points, or both.
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Cross-variogram

Where Kriging relied on the variogram to make predictions,

co-kriging relies on the cross-variogram.

γ̂AB(h) = 1
2N(h)

∑n
i

∑m
j {ZA(xi )− ZA(xj)}{ZB(xi )− ZB(xj)}

If differences between point-pairs of variable A are associated with

differences between point-pairs of variable B, they will have a

strong cross-correlation.
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Co-Kriging

Prediction of the target variable at unknown locations s0 is

computed as a linear combination of n locations of the target

variable A and p locations of a co-variable B.

Ẑ (s0) =
∑n

i=1 λiZA(si ) +
∑p

j=1 αjZB(sj)

where λ and α are the weights for target variable and co-variable,

and
∑
λ = 1 and

∑
α = 0.

Note: the direct and cross-variograms must be modeled together,

to ensure that the weights can be calculated (for more details see:

Knotters et al., 1995).
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Co-Kriging in R

Today we’ll work with data on soil organic carbon (SOC; in g/kg)

in central Mexico from (Fusaro et al., 2019)
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Co-Kriging in R cont.

We could map the distribution of SOC via ordinary Kriging

... but what if we know SOC is related to environmental

productivity? ...and we had lots of data on env. prod.
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NDVI

NDVI is a satellite derived measure of environmental productivity

(global, updated every 16 days).
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Co-Kriging in R cont.

# Import the SOC dataset

data <- read.csv("Datasets/Mexican_SOC.csv")

# prepare coordinates , data , and proj4string

coords <- data[, c("Long", "Lat")]

data <- data[, 3:6]

crs <- CRS("+proj=longlat +datum=WGS84")

# make the SpatialPointsDataFrame object

data <- SpatialPointsDataFrame(coords = coords ,

data = data ,

proj4string = crs

)

# Empirical variogram

soc.vg <- gstat:: variogram(SOC ~ 1, data = data)

#Fit Gaussian correlation models

soc.fit <- fit.variogram(soc.vg , vgm("Gau"))

soc.fit

model psill range

1 Nug 143.3185 0.0000000

2 Gau 344.1283 0.1913027
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Co-Kriging in R cont.

# Empirical variogram for NDVI

ndvi.vg <- variogram(NDVI ~ 1, data = data)

#Fit Gaussian correlation models

ndvi.fit <- fit.variogram(ndvi.vg , vgm("Gau"))

ndvi.fit

model psill range

1 Nug 0.001858227 0.00000

2 Gau 0.055467054 4.95741
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Co-Kriging in R cont.

#Combine into gstat object

g <- gstat(NULL , id = "SOC", form = SOC ~ 1,

data=data)

g <- gstat(g, id = "NDVI", form = NDVI ~ 1, data

=data)

#Estimate cross -variogram

vg.cross <- gstat:: variogram(g)

# Fit the model

g <- gstat(g, id = "NDVI", model = ndvi.fit ,

fill.all=T)

g <- fit.lmc(vg.cross , g)

variograms:

model psill range

SOC [1] Nug 2.603204e+02 0.00000

SOC [2] Gau 4.074533e+02 4.95741

NDVI [1] Nug 1.858219e-03 0.00000

NDVI [2] Gau 5.546710e-02 4.95741

SOC.NDVI [1] Nug 0.000000e+00 0.00000

SOC.NDVI [2] Gau 1.869458e+00 4.95741
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Co-Kriged SOC map

SOC.cokriged <- predict(g, grid)
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Co-Kriging considerations

The direct and cross-variograms must be modeled together, so this

places an additional constraint of all variables requiring the same

model and range.

Quality of the predictions will depend on the strength of the

correlations. If there is no, or only a weak correlation between the

variables, co-Kriging might not be of benefit.

Even more sensitive to model misspecification.

Slower than ordinary Kriging.
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Co-Kriging considerations

Still an interpolation method.
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Regression Kriging



Motivation

Co-kriging relies on correlations to improve the accuracy of

predictions, but if we know there’s a correlation between our

variables, couldn’t we just use regression to make our predictions?

Model SOC = β× NDVI Predict SOC from model Unmodelled autocorr. in the residuals
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Regression-Kriging

Regression-Kriging operates under the principle that the value of a

target variable at some location s0 can be modeled as a sum of the

deterministic m(s0) and stochastic e(s0) components.

ẑ(s0) = m̂(s0) + ê(s0) =
p∑

k=0

β̂k · qk(s0) +
n∑

i=1
λi · e(si )

where m̂(s0) is the fitted deterministic part,

ê(s0) is the Kriged residual,

β̂k are estimated deterministic model coefficients,

λi are kriging weights,

and e(si ) is the residual at location si .
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Regression-Kriging cont.

Regression-Kriging pairs a regression model’s capacity to make

predictions based on relationships between variables, m̂(s0), with

Kriging’s capacity to leverage the autocorrelation structure, ê(s0).

Predict from regression model

+

Krig the residuals
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Regression-Kriging in R

First step is to estimate the deterministic part, m̂(si )

# Estimate the deterministic part

m_hat <- lm(SOC ~ NDVI , data = DATA)

summary(m_hat)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.900 2.211 4.929 1.17e-06

***

NDVI 34.653 4.595 7.542 2.69e-13

***

---

# Store the residuals

data$residuals <- residuals(m_hat)
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Regression-Kriging in R cont.

Next we estimate the stochastic part, ê(si )

# Variogram of the residuals

vg <- variogram(residuals ~ 1, data = data)

#Fit the correlation model

s_hat <- fit.variogram(vg, vgm("Sph"))

s_hat

model psill range

1 Nug 122.0617 0.000000

2 Sph 375.1581 2.762111
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Regression-Kriging in R cont.

Then we predict from our two models.

#Create a dataframe of NDVI to predict from

NDVI_data <- rasterToPoints(NDVI , spatial = T)

NDVI_data <- as.data.frame(NDVI_data)

names(NDVI_data) <- c("NDVI", "Long", "Lat")

# Predict from the deterministic model

m_hat_s0 <- predict(m_hat , newdata = NDVI_data)

# Define the locations to krig over.

grid <- NDVI_data

sp:: coordinates(grid) <- c("Long","Lat")

grid <- SpatialPoints(coords = grid ,

proj4string = crs)

#Ordinary kriging of the residuals

e_hat_s0 <- krige(residuals ~ 1,

data ,

newdata = grid ,

model=residuals.fit)
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Regression-Kriging in R cont.

...and finish by summing the two.

z_hat <- m_hat_s0 + e_hat_s0@data$var1.pred

Predict from regression model Kriged residuals Regression-Kriged Prediction
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Regression-Kriging considerations

Regression-Kriging is generally more accurate than Kriging or

co-Kriging alone (for details see: Knotters et al., 1995).

Regression-Kriging is a generalisation of both regression and

Kriging (when there’s no autocorrelation RK = regression, when

there’s no regression model, RK = Kriging).

Can be used to interpolate and extrapolate (outside the range

where correlations are observed the predictions are made by the

regression model alone), but requires that the values of the

regression model be sampled everywhere you want to predict.

Quality of the predictions depends on two models, so it is still

sensitive to model misspecification.
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Regression with Correlated Errors



Motivation

Everything we’ve covered so far has focused on predicting the

value of some target variable at an unobserved location, but what

if we just want to model a system using spatially collected data?

For example, when predicting

election outcomes, we’re not

necessarily interested in

predicting over space, but

ignoring autocorrelation can

result in poorly behaved models.
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Autocorrelation and regression

The standard linear regression model has the following form:

yi = β0 +β1×xi +εi εi ∼ N (0, V ) V = σ2


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


The diagonal defines the variances. All 1s indicates homogeneity of

variances.

The off-diagonals define the co-variances. The 0s indicate

independence.
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Variance-Covariance Matrix

Correcting for autocorrelation ‘simply’

involves identifying the autocorrelation

structure of the residuals and modifying

the variance-covariance matrix.

V = σ2


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



When the residuals are autocorrelated,

the off-diagonals 6= 0.

For spatial data, the correlation

structure is estimated by the

semi-variance model of the residuals.
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Modelling SOC

Our starting point is the linear regression model:

SOCi = β0 + β1NDVIi + β2Elevationi + β3Elevation
2
i + εi
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Modelling SOC in R

# Import the nlme packge for fitting the model

library(nlme)

# Fit the model using REML

FIT <- gls(SOC ~ NDVI + Altitude + I(Altitude ^2), data = DATA)

# Summary of the fitted model

summary(FIT)

Generalized least squares fit by REML

Model: SOC ~ NDVI + Altitude + I(Altitude ^2)

Data: DATA

AIC BIC logLik

3700.407 3720.795 -1845.203

Coefficients:

Value Std.Error t-value p-value

(Intercept) -750.6398 44.42102 -16.898303 0.0000

NDVI -14.5660 4.55503 -3.197777 0.0015

Altitude 0.4626 0.02759 16.766968 0.0000

I(Altitude ^2) -0.0001 0.00000 -16.034018 0.0000
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Autocorr. in the SOC data

#Spatial data frame of residuals

RES <- data.frame(res =

residuals(FIT ,

type="

normalized

"),

x = DATA$Long ,
y = DATA$Lat)

coordinates(RES) <- c("x","y")

#Calculate variogram

vg <- variogram(res ~ 1, data = RES)

Variogram indicates autocorrelation,

so results can’t be trusted.
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Exponential spatial correlation in R

A model with exponential spatial correlation structure can be fit

via the corExp() function.

FIT_Exp <- gls(SOC ~ NDVI + Altitude + I(Altitude ^2),

correlation = corExp(c(1, 0.001) ,

form=~Long + Lat ,

nugget = TRUE),

data = DATA)

summary(FIT_Exp)

Correlation Structure: Exponential spatial correlation

Formula: ~Long + Lat

Parameter estimate(s):

range nugget

0.01583927 0.33726949

Coefficients:

Value Std.Error t-value p-value

(Intercept) -541.3500 58.15165 -9.309281 0.0000

NDVI -6.3930 6.23897 -1.024681 0.3061

Altitude 0.3306 0.03602 9.179753 0.0000

I(Altitude ^2) 0.0000 0.00001 -8.558770 0.0000
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Corrected model residuals
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Corrected model

Original Model Spatial correlation model
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Take home messages

There are different options for incorporating covariates when

modelling spatial data, and each has their pros and cons.

Co-Kriging allows you to incorporate covariates, and doesn’t

require that the samples are co-located, but places constraints on

the models and only interpolates.

Regression-Kriging allows you to incorporate covariates, can

extrapolate, but requires that the information on the covariates are

available at the prediction locations.

Correlated error models can improve the reliability of regression

models, but aren’t designed for spatial predictions.
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